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CHAPTER 1

INTRODUCTION TO MODERN
NETWORK THEORY

1.1 MODERN NETWORK THEORY

A generalized filter is shown in Figure 1-1. The filter block may consist of inductors, capac-
itors, resistors, and possibly active elements such as operational amplifiers and transistors.
The terminations shown are a voltage source E, a source resistance R, and a load resistor R, .

The circuit equations for the network of Figure 1-1 can be written by using circuit-
analysis techniques. Modern network theory solves these equations to determine the net-
work values for optimum performance in some respect.

The Pole-Zero Concept

The frequency response of the generalized filter can be expressed as a ratio of two polyno-
mials in s where s = jw (j = V —1, and w, the frequency in radians per second, is 27f)
and is referred to as a transfer function. This can be stated mathematically as

E, _ NG

T(s) = E " Do) (1-D

The roots of the denominator polynomial D(s) are called poles and the roots of the
numerator polynomial N(s) are referred to as zeros.

Deriving a network’s transfer function could become quite tedious and is beyond the
scope of this book. The following discussion explores the evaluation and representation of
a relatively simple transfer function.

Analysis of the low-pass filter of Figure 1-2a results in the following transfer function:

1

T(s):s3+2sz+2s+l

(1-2)
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FIGURE 1-1 A generalized filter.
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FIGURE 1-2 An all-pole n = 3 low-pass filter: (@) a filter circuit; and (b) a frequency response.

Let us now evaluate this expression at different frequencies after substituting jw for s.
The result will be expressed as the absolute magnitude of 7(jw) and the relative attention
in decibels with respect to the response at DC.

|

T(jw) = 13
Vo) = 00 + 2w — o) (1-3)

%) |T(jw)| 20 log |T(jw)|

0 1 0dB

1 0.707 -3 dB

2 0.124 —18 dB

3 0.0370 —29dB

4 0.0156 —-36dB

The frequency-response curve is plotted in Figure 1-2b.

Analysis of Equation (1-2) indicates that the denominator of the transfer function has
three roots or poles and the numerator has none. The filter is therefore called an all-pole
type. Since the denominator is a third-order polynomial, the filter is also said to have
an n = 3 complexity. The denominator poles are s = —1,s = —0.500 + ;0.866, and
s = —0.500 — j0.866.

These complex numbers can be represented as symbols on a complex-number plane.
The abscissa is «, the real component of the root, and the ordinate is 3, the imaginary part.
Each pole is represented as the symbol X, and a zero is represented as 0. Figure 1-3 illus-
trates the complex-number plane representation for the roots of Equation (1-2).

Certain mathematical restrictions must be applied regarding the location of poles and
zeros in order for the filter to be realizable. They must occur in pairs which are conjugates
of each other, except for real-axis poles and zeros, which may occur singly. Poles must also
be restricted to the left plane (in other words, the real coordinate of the pole must be nega-
tive), while zeros may occur in either plane.

Synthesis of Filters from Polynomials. Modern network theory has produced families of
standard transfer functions that provide optimum filter performance in some desired
respect. Synthesis is the process of deriving circuit component values from these transfer
functions. Chapter 11 contains extensive tables of transfer functions and their associated
component values so that design by synthesis is not required. Also, computer programs on
the CD-ROM simplify the design process. However, in order to gain some understanding
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FIGURE 1-3 A complex-frequency plane repre-
sentation of Equation (1-2).

as to how these values have been determined, we will now discuss a few methods of filter
synthesis.

Synthesis by Expansion of Driving-Point Impedance. The input impedance to the gen-
eralized filter of Figure 1-1 is the impedance seen looking into terminals 1 and 2 with ter-
minals 3 and 4 terminated, and is referred to as the driving-point impedance or Z,; of the
network. If an expression for Z,, could be determined from the given transfer function, this
expression could then be expanded to define the filter.

A family of transfer functions describing the flattest possible shape and a monotoni-
cally increasing attenuation in the stopband is known as the Butterworth low-pass
response. These all-pole transfer functions have denominator polynomial roots, which fall
on a circle having a radius of unity from the origin of the jw axis. The attenuation for this
family is 3 dB at 1 rad/s.

The transfer function of Equation (1-2) satisfies this criterion. It is evident from
Figure 1-3 that if a circle were drawn having a radius of 1, with the origin as the center,
it would intersect the real root and both complex roots.

If R, in the generalized filter of Figure 1-1 is set to 1 ), a driving-point impedance
expression can be derived in terms of the Butterworth transfer function as

_ D(s) — 5"

e O (1-4)

where D(s) is the denominator polynomial of the transfer function and # is the order of the
polynomial.

After D(s) is substituted into Equation (1-4), Z,, is expanded using the continued frac-
tion expansion. This expansion involves successive division and inversion of a ratio of two
polynomials. The final form contains a sequence of terms, each alternately representing a
capacitor and an inductor and finally the resistive termination. This procedure is demon-
strated by the following example.

Example 1-1 Synthesis of N = 3 Butterworth Low-Pass Filter by Continued
Fraction Expansion

Required:
A low-pass LC filter having a Butterworth n = 3 response.
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Result:

(a) Use the Butterworth transfer function:

1
s34+ 2524+ 25 + 1

T(s) = (1-2)

(b) Substitute D(s) = s* + 25> + 25 + 1 and 5" = s> into Equation (1-4), which results in

7 = 252+ 25 + 1
263 + 2524+ 25 + 1

(1-4)

(c) Express Z,, so that the denominator is a ratio of the higher-order to the lower-order
polynomial:

Z, = !
283 + 2624+ 25 + 1
252+ 25 + 1

(d) Dividing the denominator and inverting the remainder results in

1
Z, = 1
J’_i
STy o5+ 1
s+ 1

(e) After further division and inversion, we get as our final expression:

A — (1-5)

2s +

s+ 1

The circuit configuration of Figure 1-4 is called a ladder network, since it consists
of alternating series and shunt branches. The input impedance can be expressed as the
following continued fraction:

Z,= (1-6)

1
Z, , + 771

where Y = sC and Z = sL for the low-pass all-pole ladder except for a resistive termi-
nation where ¥, = sC + 1/R,.
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FIGURE 1-4 A general ladder network.

Figure 1-5 can then be derived from Equation (1-5) and (1-6) by inspection. This can
be proved by reversing the process of expanding Z,,. By alternately adding admittances
and impedances while working toward the input, Z,, is verified as being equal to
Equation (1-5).

Synthesis for Unequal Terminations. 1If the source resistor is set equal to 1 () and the
load resistor is desired to be infinite (unterminated), the impedance looking into terminals 1
and 2 of the generalized filter of Figure 1-1 can be expressed as

D(s even)

11 D(s odd) -7

D(s even) contains all the even-power s terms of the denominator polynomial and
D(s odd) consist of all the odd-power s terms of any realizable all-pole low-pass transfer
function. Z,, is expanded into a continued fraction, as in Example 1-1, to define the circuit.

Example 1-2 Synthesis of N = 3 Butterworth Low-Pass Filter for an Infinite
Termination

Required:
Low-pass filter having a Butterworth n = 3 response with a source resistance of 1 {) and
an infinite termination.

FIGURE 1-5 The low-pass filter for Equation (1-5).

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2006 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.



INTRODUCTION TO MODERN NETWORK THEORY
6 CHAPTER ONE
Result:

(a) Use the Butterworth transfer function:

1

9= oo+ s+ 1 1-2)
(b) Substitute D(s even) = 2s> + 1 and D(s odd) = s* + 2s into Equation (1-7):
252 + 1
Z, =" 1-7
534+ 2 (1-7)
(c) Express Z,, so that the denominator is a ratio of the higher- to the lower-order
polynomial:
1
A —
53 4+ 25
252 + 1
(d) Dividing the denominator and inverting the remainder results in
1
le = 05 1
Ss+ 5
T
1.5s

(e) Dividing and further inverting results in the final continued fraction:

1

Z, =

= (1-8)
0.5s +

I
13335 +
’ 1.5s

The circuit is shown in Figure 1-6.

Synthesis by Equating Coefficients. An active three-pole low-pass filter is shown in
Figure 1-7. Its transfer function is given by

1

) = $3A 4+ $?B + sC + 1 (1-9)

where A = C,G,C, (1-10)

B =2C(C, + Cy) (1-11)

and C=C, + 3C; (1-12)
14 1333 H

OSF 15F
o T T 0

FIGURE 1-6 The low-pass filter of Example 1-2.
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FIGURE 1-7 The general n = 3 active low-pass filter.

If a Butterworth transfer function is desired, we can set Equation (1-9) equal to
Equation (1-2).
1 _ 1

T(s) = =
() A+ 2B +sC+ 1 s34 224+ 25 + 1

(1-13)

By equating coefficients, we obtain

A=1
B=
CcC=2

Substituting these coefficients in Equation (1-10) through (1-12) and solving for C;, C,,
and C; results in the circuit of Figure 1-8.

Synthesis of filters directly from polynomials offers an elegant solution to filter design.
However, it also may involve laborious computations to determine circuit element values.
Design methods have been greatly simplified by the curves, tables, computer programs, and
step-by-step procedures provided in this handbook, so design by synthesis can be left to the
advanced specialist.

Active vs. Passive Filters. The LC filters of Figures 1-5 and 1-6 and the active filter of
Figure 1-8 all satisfy an n = 3 Butterworth low-pass transfer function. The filter designer
is frequently faced with the sometimes difficult decision of choosing whether to use an
active or LC design. A number of factors must be considered. Some of the limitations and
considerations for each filter type will now be discussed.

Frequency Limitations. At subaudio frequencies, LC filter designs require high val-
ues of inductance and capacitance along with their associated bulk. Active filters are more
practical because they can be designed at higher impedance levels so that capacitor magni-
tudes are reduced.

Above 20 MHz or so, most commercial-grade operational amplifiers have insufficient
open-loop gain for the average active filter requirement. However, amplifiers are available

il

3546 F

Out

1392 F 02024 F

FIGURE 1-8 A Butterworth n = 3 active low-pass filter.
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with extended bandwidth at an increased cost so that active filters at frequencies up to
100 MHz are possible. LC filters, on the other hand, are practical at frequencies up to a
few hundred megahertz. Beyond this range, filters become impractical to build in lumped
form, and so distributed parameter techniques are used, such as stripline or microstrip,
where a PC board functions as a distributed transmission line.

Size Considerations. Active filters are generally smaller than their LC counterparts
since inductors are not required. Further reduction in size is possible with microelectronic
technology. Surface mount components for the most part have replaced Hybrid technology,
whereas in the past Hybrids were the only way to reduce the size of active filters.

Economics and Ease of Manufacture. LC filters generally cost more than active filters
because they use inductors. High-quality coils require efficient magnetic cores. Sometimes,
special coil-winding methods are needed as well. These factors lead to the increased cost
of LC filters.

Active filters have the distinct advantage that they can be easily assembled using stan-
dard off-the-shelf components. LC filters require coil-winding and coil-assembly skills. In
addition, eliminating inductors prevents magnetic emissions, which can be troublesome.

Ease of Adjustment.  In critical LC filters, tuned circuits require adjustment to specific
resonances. Capacitors cannot be made variable unless they are below a few hundred pico-
farads. Inductors, however, can easily be adjusted, since most coil structures provide a
means for tuning, such as an adjustment slug for a Ferrite potcore.

Many active filter circuits are not easily adjustable, however. They may contain RC sec-
tions where two or more resistors in each section have to be varied in order to control reso-
nance. These types of circuit configurations are avoided. The active filter design techniques
presented in this handbook include convenient methods for adjusting resonances where
required, such as for narrowband bandpass filters.
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CHAPTER 2

SELECTING THE RESPONSE
CHARACTERISTIC

2.1 FREQUENCY-RESPONSE NORMALIZATION

Several parameters are used to characterize a filter’s performance. The most commonly
specified requirement is frequency response. When given a frequency-response specifica-
tion, the engineer must select a filter design that meets these requirements. This is accom-
plished by transforming the required response to a normalized low-pass specification
having a cutoff of 1 rad/s. This normalized response is compared with curves of normal-
ized low-pass filters which also have a 1-rad/s cutoff. After a satisfactory low-pass filter is
determined from the curves, the tabulated normalized element values of the chosen filter
are transformed or denormalized to the final design.

Modern network theory has provided us with many different shapes of amplitude ver-
sus frequency which have been analytically derived by placing various restrictions on
transfer functions. The major categories of these low-pass responses are

* Butterworth

¢ Chebyshev

¢ Linear Phase
 Transitional

* Synchronously tuned
« Elliptic-function

With the exception of the elliptic-function family, these responses are all normalized
to a 3-dB cutoff of 1 rad/s.

Frequency and Impedance Scaling

The basis for normalization of filters is the fact that a given filter’s response can be scaled
(shifted) to a different frequency range by dividing the reactive elements by a frequency-
scaling factor (FSF). The FSF is the ratio of a reference frequency of the desired response
to the corresponding reference frequency of the given filter. Usually 3-dB points are
selected as reference frequencies of low-pass and high-pass filters, and the center frequency
is chosen as the reference for bandpass filters. The FSF can be expressed as

desired reference frequency

FSE = existing reference frequency 2-D

9
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The FSF must be a dimensionless number; so both the numerator and denominator of
Equation (2-1) must be expressed in the same units, usually radians per second. The fol-
lowing example demonstrates the computation of the FSF and frequency scaling of filters.

Example 2-1 Frequency Scaling of a Low-Pass Filter

Required:
A low-pass filter, either LC or active, with an n = 3 Butterworth transfer function hav-
ing a 3-dB cutoff at 1000 Hz.

Result:
Figure 2-1 illustrates the LC and active n = 3 Butterworth low-pass filters discussed in
Chapter 1 and their response.

(a) Compute FSF.

271000 rad/s
ESF = =70 55 = 6280 @2-1)

(b) Dividing all the reactive elements by the FSF results in the filters of Figure 2-2a
and b and the response of Figure 2-2c.

Note that all points on the frequency axis of the normalized response have been mul-
tiplied by the FSF. Also, since the normalized filter has its cutoff at 1 rad/s, the FSF can
be directly expressed by 277f,, where f. is the desired low-pass cutoff frequency in hertz.

Frequency scaling a filter has the effect of multiplying all points on the frequency axis
of the response curve by the FSF. Therefore, a normalized response curve can be directly
used to predict the attenuation of the denormalized filter.

10 2H
3546F .
16 10 10 Out
1F 1F 10
T —[, 1392F 02024F

(a) (b)

rad/s

©
FIGURE 2-1 »n = 3 Butterworth low-pass filter: (a) LC filter; (b) active filter; and (c) frequency response.
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10 0.318 mH l
565
uF
1e 14 |14 Out
In
222 uF 32.2 uF

o] 6280 12560 rad/s
1000 2000 Hz
(c)

FIGURE 2-2 The denormalized low-pass filter of Example 2-1: (a) LC filter; (b) active filter; and (c) fre-
quency response.

When the filters of Figure 2-1 were denormalized to those of Figure 2-2, the transfer
function changed as well. The denormalized transfer function became

1
4.03 X 107123 + 5.08 X 107%2 + 3.18 X 1074s + 1
The denominator has roots:
s = —6280,5s = —3140 + j5438,and s = —3140 — j5438.

T(s) = (2-2)

These roots can be obtained directly from the normalized roots by multiplying the nor-
malized root coordinates by the FSF. Frequency scaling a filter also scales the poles and
zeros (if any) by the same factor.

The component values of the filters in Figure 2-2 are not very practical. The capacitor
values are much too large and the 1-() resistor values are not very desirable. This situation
can be resolved by impedance scaling. Any linear active or passive network maintains its
transfer function if all resistor and inductor values are multiplied by an impedance-scaling
factor Z, and all capacitors are divided by the same factor Z. This occurs because the Zs can-
cel in the transfer function. To prove this, let’s investigate the transfer function of the sim-
ple two-pole low-pass filter of Figure 2-3a, which is

1

T8 = Grc+ seR + 1 @3)
Impedance scaling can be mathematically expressed as
R =ZR (2-4)
L =7L (2-5)
- C
C' = 7 (2-6)

where the primes denote the values after impedance scaling.
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o
Njo

(a) (b)

FIGURE 2-3 A two-pole low-pass LC filter: (a) a basic filter; and (b) an
impedance-scaled filter.

If we impedance-scale the filter, we obtain the circuit of Figure 2-3b. The new transfer
function then becomes

1

s2ZL% + S%ZR + 1

Clearly, the Zs cancel, so both transfer functions are equivalent.

We can now use impedance scaling to make the values in the filters of Figure 2-2 more
practical. If we use impedance scaling with a Z of 1000, we obtain the filters of Figure 2-4.
The values are certainly more suitable.

Frequency and impedance scaling are normally combined into one step rather than per-
formed sequentially. The denormalized values are then given by

1(s) = 2-7)

R =RXZ (2-8)
, _LXZ

L= "5sF (2-9)
. C

C=FFxz (2-10)

where the primed values are both frequency- and impedance-scaled.

Low-Pass Normalization. In order to use normalized low-pass filter curves and tables, a
given low-pass filter requirement must first be converted into a normalized requirement.
The curves can now be entered to find a satisfactory normalized filter which is then scaled
to the desired cutoff.

The first step in selecting a normalized design is to convert the requirement into a steep-
ness factor A, which can be defined as

(2-11)

(a) (b)
FIGURE 2-4 The impedance-scaled filters of Example 2-1: (a) LC filter; and () active filter.
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where f; is the frequency having the minimum required stopband attenuation and f, is the
limiting frequency or cutoff of the passband, usually the 3-dB point. The normalized curves
are compared with A, and a design is selected that meets or exceeds the requirement. The
design is often frequency scaled so that the selected passband limit of the normalized design
occurs at f,.

If the required passband limit f, is defined as the 3-dB cutoff, the steepness factor A can
be directly looked up in radians per second on the frequency axis of the normalized curves.

Suppose that we required a low-pass filter that has a 3-dB point at 100 Hz and more than
30-dB attenuation at 400 Hz. A normalized low-pass filter that has its 3-dB point at 1 rad/s
and over 30-dB attenuation at 4 rad/s would meet the requirement if the filter were
frequency-scaled so that the 3-dB point occurred at 100 Hz. Then there would be over
30-dB attenuation at 400 Hz, or four times the cutoff, because a response shape is retained
when a filter is frequency scaled.

The following example demonstrates normalizing a simple low-pass requirement.

Example 2-2 Normalizing a Low-Pass Specification for a 3-dB cutoff

Required:
Normalize the following specification:

A low-pass filter
3 dB at 200 Hz
30-dB minimum at 800 Hz

Result:
(a) Compute A,.
o 800Hz _

s~ f T 200Hz @10

(b) Normalized requirement:

3 dB at 1 rad/s

30-dB minimum at 4 rad/s

In the event f, does not correspond to the 3-dB cutoff, A, can still be computed and a
normalized design found that will meet the specifications. This is illustrated in the follow-
ing example.

Example 2-3 Normalizing a Low-Pass Specification for a 1-dB cutoff

Required:
Normalize the following specification:

A low-pass filter
1 dB at 200 Hz
30-dB minimum at 800 Hz

Result:

(a) Compute A,.

/i 800 Hz
$TF T 200mz 4 (2-11)
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(b) Normalized requirement:

1 dB at K rad/s
30-dB minimum at 4 K rad/s
(where K is arbitrary)
A possible solution to Example 2-3 would be a normalized filter which has a 1-dB point
at 0.8 rad/s and over 30 dB attenuation at 3.2 rad/s. The fundamental requirement is that the

normalized filter makes the transition between the passband and stopband limits within a
frequency ratio A,.

High-Pass Normalization. A normalized n = 3 low-pass Butterworth transfer function
was given in section 1.1 as

1
s3+ 252 4+ 25 + 1

T(s) = (1-2)

and the results of evaluating this transfer function at various frequencies were

w | T(jw) | 20 log | T(jw) |
0 1 0dB
1 0.707 —3dB
2 0.124 —18 dB
3 0.0370 —29dB
4 0.0156 —36dB

Let’s now perform a high-pass transformation by substituting 1/s for s in Equation (1-2).
After some algebraic manipulations, the resulting transfer function becomes

§3

s3+ 252 4+ 25 + 1

T(s) = (2-12)

If we evaluate this expression at specific frequencies, we can generate the following
table:

w | T(w) | 20 log | T(jw) |
0.25 0.0156 —36dB
0.333 0.0370 —29dB
0.500 0.124 —18 dB
1 0.707 —3dB
o 1 0dB

The response is clearly that of a high-pass filter. It is also apparent that the low-pass
attenuation values now occur at high-pass frequencies that are exactly the reciprocals of the
corresponding low-pass frequencies. A high-pass transformation of a normalized low-pass
filter transposes the low-pass attenuation values to reciprocal frequencies and retains the
3-dB cutoff at 1 rad/s. This relationship is evident in Figure 2-5, where both filter responses
are compared.
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rad/s
FIGURE 2-5 A normalized low-pass high-pass relationship.

The normalized low-pass curves could be interpreted as normalized high-pass curves by
reading the attenuation as indicated and taking the reciprocals of the frequencies. However,
it is much easier to convert a high-pass specification into a normalized low-pass require-
ment and use the curves directly.

To normalize a high-pass filter specification, calculate A, which in the case of high-pass
filters is given by

I
A= (2-13)

Since the A, for high-pass filters is defined as the reciprocal of the A for low-pass fil-
ters, Equation (2-13) can be directly interpreted as a low-pass requirement. A normalized
low-pass filter can then be selected from the curves. A high-pass transformation is per-
formed on the corresponding low-pass filter, and the resulting high-pass filter is scaled to
the desired cutoff frequency.

The following example shows the normalization of a high-pass filter requirement.

Example 2-4 Normalizing a High-Pass Specification
Required:
Normalize the following requirement:

A high-pass filter

3 dB at 200 Hz

30-dB minimum at 50 Hz

Result:
(a) Compute A,.

f. 200 Hz
A=% =S, — 4 (2-13)
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(b) Normalized equivalent low-pass requirement:

3 dB at 1 rad/s
30-dB minimum at 4 rad/s

Bandpass Normalization. Bandpass filters fall into two categories: narrowband and
wideband. If the ratio of the upper cutoff frequency to the lower cutoff frequency is over 2
(an octave), the filter is considered a wideband type.

Wideband Bandpass Filters. Wideband filter specifications can be separated into indi-
vidual low-pass and high-pass requirements which are treated independently. The resulting
low-pass and high-pass filters are then cascaded to meet the composite response.

Example 2-5 Normalizing a Wideband Bandpass Filter

Required:
Normalize the following specification:

bandpass filter
3 dB at 500 and 1000 Hz
40-dB minimum at 200 and 2000 Hz

Result:

(a) Determine the ratio of upper cutoff to lower cutoff.

1000 Hz _ )
500 Hz
wideband type
(b) Separate requirement into individual specifications.
High-pass filter: Low-pass filter:
3 dB at 500 Hz 3 dB at 1000 Hz
40-dB minimum at 200 Hz ~ 40-dB minimum at 2000 Hz
A, =25 (2-13) A, =20 (2-11)

(¢) Normalized high-pass and low-pass filters are now selected, scaled to the required
cutoff frequencies, and cascaded to meet the composite requirements. Figure 2-6
shows the resulting circuit and response.

Narrowband Bandpass Filters. Narrowband bandpass filters have a ratio of upper cut-
off frequency to lower cutoff frequency of approximately 2 or less and cannot be designed
as separate low-pass and high-pass filters. The major reason for this is evident from Figure
2-7. As the ratio of upper cutoff to lower cutoff decreases, the loss at the center frequency
will increase, and it may become prohibitive for ratios near unity.

If we substitute s + 1/s for s in a low-pass transfer function, a bandpass filter results.
The center frequency occurs at 1 rad/s, and the frequency response of the low-pass filter is
directly transformed into the bandwidth of the bandpass filter at points of equivalent atten-
uation. In other words, the attenuation bandwidth ratios remain unchanged. This is shown
in Figure 2-8, which shows the relationship between a low-pass filter and its transformed
bandpass equivalent. Each pole and zero of the low-pass filter is transformed into a pair of
poles and zeros in the bandpass filter.
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Low-pass High-pass
| e s Out
/N '
(a

Hz
®)

FIGURE 2-6 The results of Example 2-5: (a) cascade of
low-pass and high-pass filters; and (b) frequency response.

In order to design a bandpass filter, the following sequence of steps is involved.

1. Convert the given bandpass filter requirement into a normalized low-pass specification.
2. Select a satisfactory low-pass filter from the normalized frequency-response curves.
3. Transform the normalized low-pass parameters into the required bandpass filter.

Low-pass High-pass
I ——] p——Out
\ r
(a)
0 O —=—=——=

da8
dB

Frequency Frequency
(b) (c)

FIGURE 2-7 Limitations of the wideband approach for narrowband filters: (a) a cas-
cade of low-pass and high-pass filters; (b) a composite response; and (¢) algebraic sum
of attenuation.
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FIGURE 2-8 A low-pass to bandpass transformation.

The response shape of a bandpass filter is shown in Figure 2-9, along with some basic
terminology. The center frequency is defined as

Jo= Vi (2-14)

where f; is the lower passband limit and f, is the upper passband limit, usually the 3-dB
attenuation frequencies. For the more general case

fo= Viih (2-15)

where f; and f, are any two frequencies having equal attenuation. These relationships imply
geometric symmetry; that is, the entire curve below f; is the mirror image of the curve
above f;, when plotted on a logarithmic frequency axis.

An important parameter of bandpass filters is the filter selectivity factor or Q, which is
defined as

N

0=3w (2-16)

where BW is the passband bandwidth or f, — f;.
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—
Frequency

FIGURE 2-9 A general bandpass filter response
shape.

As the filter Q increases, the response shape near the passband approaches the arith-
metically symmetrical condition which is mirror-image symmetry near the center fre-
quency, when plotted using a linear frequency axis. For Qs of 10 or more, the center
frequency can be redefined as the arithmetic mean of the passband limits, so we can replace
Equation (2-14) with

Jo T 1.
fh= LT (2-17)

In order to utilize the normalized low-pass filter frequency-response curves, a given nar-
rowband bandpass filter specification must be transformed into a normalized low-pass
requirement. This is accomplished by first manipulating the specification to make it geo-
metrically symmetrical. At equivalent attenuation points, corresponding frequencies above
and below f;, must satisfy

Lih =13 (2-18)

which is an alternate form of Equation (2-15) for geometric symmetry. The given specifi-
cation is modified by calculating the corresponding opposite geometric frequency for each
stopband frequency specified. Each pair of stopband frequencies will result in two new fre-
quency pairs. The pair having the lesser separation is retained, since it represents the more
severe requirement.

A bandpass filter steepness factor can now be defined as

A = stopband bandwidth r
s~ passband bandwidth (2-19)

This steepness factor is used to select a normalized low-pass filter from the frequency-
response curves that makes the passband to stopband transition within a frequency ratio
of A,.
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The following example shows the normalization of a bandpass filter requirement.

Example 2-6 Normalizing a Bandpass Filter Requirement
Required:
Normalize the following bandpass filter requirement:

A bandpass filter

A center frequency of 100 Hz

3 dB at =15 Hz (85 Hz, 115 Hz)

40 dB at =30 Hz (70 Hz, 130 Hz)

Result:

(a) First, compute the center frequency f;.

fy=Vfif, = V85 x 115 = 989 Hz (2-14)

(b) Compute two geometrically related stopband frequency pairs for each pair of stop-

(©)

(d)

band frequencies given.

Let f, = 70 Hz.
I3 (989
h=% =" = 139.7 Hz (2-18)
Let f, = 130 Hz.
I (9897
e 752 Hz (2-18)

The two pairs are
fi = 70Hz, f, = 139.7Hz (f, — f, = 69.7 Hz)
and fi = 752Hz,f, = 130 Hz (f, — f, = 54.8 Hz)

Retain the second frequency pair, since it has the lesser separation. Figure 2-10
compares the specified filter requirement and the geometrically symmetrical
equivalent.

Calculate A,.
stopband bandwidth
=P g 11 R (2-19)
§ passband bandwidth 30 Hz
A normalized low-pass filter can now be selected from the normalized curves.

Since the passband limit is the 3-dB point, the normalized filter is required to have
over 40 dB of rejection at 1.83 rad/s or 1.83 times the 1-rad/s cutoff.

The results of Example 2-6 indicate that when frequencies are specified in an arithmeti-
cally symmetrical manner, the narrower stopband bandwidth can be directly computed by

7

B\Nslophand = f2 - f2

(2-20)
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()
FIGURE 2-10 The frequency-response requirements of
Example 2-6: (a) a given filter requirement; and (b) a geo-
metrically symmetrical requirement.

The narrower stopband bandwidth corresponds to the more stringent value of A, the
steepness factor.

It is sometimes desirable to compute two geometrically related frequencies that corre-
spond to a given bandwidth. Upon being given the center frequency f, and the bandwidth
BW, the lower and upper frequencies are respectively computed by

fi=v (B;V) +f5 - ¥ (2-21)
hHh= w/(%) +f3+ % (2-22)

Use of these formulas is illustrated in the following example.

Example 2-7 Determining Bandpass Filter Bandwidths at Equal Attenuation Points

Required:
For a bandpass filter having a center frequency of 10 kHz, determine the frequencies
corresponding to bandwidths of 100 Hz, 500 Hz, and 2000 Hz.
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Result:
Compute f; and f, for each bandwidth, using
2
A=A (BY) v - BN @-21)
2 2
[(BW? BW
£ = (2) +f3+ > (2-22)
BW, Hz fi»Hz F,, Hz
100 9950 10,050
500 9753 10,253
2000 9050 11,050

The results of Example 2-7 indicate that for narrow percentage bandwidths (1 percent)
/i, and f, are arithmetically spaced about f;,. For the wider cases, the arithmetic center of f|
and f, would be slightly above the actual geometric center frequency f;,. Another and more
meaningful way of stating the converse is that for a given pair of frequencies, the geomet-
ric mean is below the arithmetic mean.

Bandpass filter requirements are not always specified in an arithmetically symmetrical
manner as in the previous examples. Multiple stopband attenuation requirements may also
exist. The design engineer is still faced with the basic problem of converting the given para-
meters into geometrically symmetrical characteristics so that a steepness factor (or factors)
can be determined. The following example demonstrates the conversion of a specification
somewhat more complicated than the previous example.

Example 2-8 Normalizing a Non-Symmetrical Bandpass Filter Requirement

Required:
Normalize the following bandpass filter specification:

bandpass filter

1-dB passband limits of 12 kHz and 14 kHz
20-dB minimum at 6 kHz

30-dB minimum at 4 kHz

40-dB minimum at 56 kHz

Result:
(a) First, compute the center frequency, using
fi=12kHz  f, = 14kHz
Jo = 12.96 kHz (2-14)

(b) Compute the corresponding geometric frequency for each stopband frequency
given, using Equation (2-18).

hh =138 (2-18)
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12.96 kHz

.

Hz

(b)

FIGURE 2-11 The given and transformed responses of
Example 2-7: (a) a given requirement; and (b) geometrically
symmetrical response.

Figure 2-11 illustrates the comparison between the given requirement and the cor-
responding geometrically symmetrical equivalent response.

h f
6 kHz 28 kHz
4 kHz 42 kHz
3 kHz 56 kHz

(c) Calculate the steepness factor for each stopband bandwidth in Figure 2-11b.

) _ 22kHz _
20 dB: A=5 =1 (2-19)
_ 38kHz _
30 dB: A = Ky 19
~ 53kHz
40 dB: A = S kHz 26.5

(d) Select a low-pass filter from the normalized tables. A filter is required that has over
20, 30, and 40 dB of rejection at, respectively, 11, 19, and 26.5 times its 1-dB cutoff.
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Band-Reject Normalization

Wideband Band-Reject Filters. Normalizing a band-reject filter requirement
proceeds along the same lines as for a bandpass filter. If the ratio of the upper cutoff
frequency to the lower cutoff frequency is an octave or more, a band-reject filter require-
ment can be classified as wideband and separated into individual low-pass and high-pass
specifications. The resulting filters are paralleled at the input and combined at the output.
The following example demonstrates normalization of a wideband band-reject filter
requirement.

Example 2-9 Normalizing a Wideband Band-Reject Filter

Required:

A band-reject filter
3 dB at 200 and 800 Hz
40-dB minimum at 300 and 500 Hz

Result:

(a) Determine the ratio of upper cutoff to lower cutoff, using

800 Hz _ 4
200 Hz
wideband type
(b) Separate requirements into individual low-pass and high-pass specifications.
Low-pass filter: High-pass filter:
3 dB at 200 Hz 3 dB at 800 Hz
40-dB minimum at 300 Hz 40-dB minimum at 500 Hz
A =15 (2-11) A =16 (2-13)

(c) Select appropriate filters from the normalized curves and scale the normalized low-
pass and high-pass filters to cutoffs of 200 Hz and 800 Hz, respectively. Figure 2-12
shows the resulting circuit and response.

The basic assumption of the previous example is that when the filter outputs are com-
bined, the resulting response is the superimposed individual response of both filters. This
is a valid assumption if each filter has sufficient rejection in the band of the other filter so
that there is no interaction when the outputs are combined. Figure 2-13 shows the case
where inadequate separation exists.

The requirement for a minimum separation between cutoffs of an octave or more is by
no means rigid. Sharper filters can have their cutoffs placed closer together with minimal
interaction.

Narrowband Band-Reject Filters. The normalized transformation described for band-
pass filters where s + 1/s is substituted into a low-pass transfer function can instead be
applied to a high-pass transfer function to obtain a band-reject filter. Figure 2-14 shows the
direct equivalence between a high-pass filter’s frequency response and the transformed
band-reject filter’s bandwidth.
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FIGURE 2-12 The results of Example 2-9: (a) combined low-pass
and high-pass filters; and (b) a frequency response.
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FIGURE 2-13 Limitations of the wideband band-reject design approach: (a) combined low-pass and
high-pass filters; (b) composite response; and (c) combined response by the summation of outputs.
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rad/s
FIGURE 2-14 The relationship between band-reject and high-pass filters.

The design method for narrowband band-reject filters can be defined as follows:

1. Convert the band-reject requirement directly into a normalized low-pass specification.

2. Select a low-pass filter (from the normalized curves) that meets the normalized
requirements.

3. Transform the normalized low-pass parameters into the required band-reject filter. This
may involve designing the intermediate high-pass filter, or the transformation may be
direct.

The band-reject response has geometric symmetry just as bandpass filters have. Figure
2-15 defines this response shape. The parameters shown have the same relationship to each
other as they do for bandpass filters. The attenuation at the center frequency is theoretically
infinite since the response of a high-pass filter at DC has been transformed to the center
frequency.

Frequency
—— i

FIGURE 2-15 The band-reject response.
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The geometric center frequency can be defined as

fo= VIt (2-14)
where f; and f, are usually the 3-dB frequencies, or for the more general case:
fo= Vhh (2-15)
The selectivity factor Q is defined as
o
Q= 3w (2-16)

where BW is f, — f;. For Os of 10 or more, the response near the center frequency
approaches the arithmetically symmetrical condition, so we can then state

Jo
=T (2-17)
To use the normalized curves for the design of a band-reject filter, the response require-
ment must be converted to a normalized low-pass filter specification. In order to accomplish
this, the band-reject specification should first be made geometrically symmetrical—that is,
each pair of frequencies having equal attenuation should satisfy

Lih =13 (2-18)

which is an alternate form of Equation (2-15). When two frequencies are specified at a par-
ticular attenuation level, two frequency pairs will result from calculating the corresponding
opposite geometric frequency for each frequency specified. Retain the pair having the
wider separation since it represents the more severe requirement. In the bandpass case, the
pair having the lesser separation represented the more difficult requirement.

The band-reject filter steepness factor is defined by

_ passband bandwidth
s 7 stopband bandwidth

(2-23)

A normalized low-pass filter can now be selected that makes the transition from the
passband attenuation limit to the minimum required stopband attenuation within a fre-
quency ratio A .

The following example demonstrates the normalization procedure for a band-reject filter.

Example 2-10 Normalizing a Narrowband Band-Reject Filter
Required:

band-reject filter

center frequency of 1000 Hz

3 dB at 300 Hz (700 Hz, 1300 Hz)
40 dB at 200 Hz (800 Hz, 1200 Hz)

Result:

(a) First, compute the center frequency f;.

£, = V£, = V700 X 1300 = 954 Hz (2-14)
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(b) Compute two geometrically related stopband frequency pairs for each pair of stop-
band frequencies given:

Let f, = 800 Hz
5 (954)
h=7 = 50 - 1138 Hz (2-18)
Let f, = 1200 Hz
[ (954
V=7 T 200 T 758 Hz (2-18)

The two pairs are

h

800 Hz, f, = 1138 Hz (f, — f,

338 Hz)

and

f, = 758 Hz f, = 1200 Hz (f, — f, = 442 Hz)

Retain the second pair since it has the wider separation and represents the more
severe requirement. The given response requirement and the geometrically sym-
metrical equivalent are compared in Figure 2-16

(c) Calculate A_.

__ passband bandwidth 600 Hz

= 1.36 (2-23)

s stopband bandwidth T 442 Hz

0ds

FIGURE 2-16 The response of Example 2-10: (a) given require-
ment; and (b) geometrically symmetrical response.
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(d) Select a normalized low-pass filter from the normalized curves that makes the tran-
sition from the 3-dB point to the 40-dB point within a frequency ratio of 1.36. Since
these curves are all normalized to 3 dB, afilter is required with over 40 dB of rejec-
tion at 1.36 rad/s.

2.2 TRANSIENT RESPONSE

In our previous discussions of filters, we have restricted our interest to frequency-domain
parameters such as frequency response. The input forcing function was a sine wave. In real-
world applications of filters, input signals consist of a variety of complex waveforms. The
response of filters to these nonsinusoidal inputs is called transient response.

A filter’s transient response is best evaluated in the time domain since we are usually
dealing with input signals which are functions of time, such as pulses or amplitude steps.
The frequency- and time-domain parameters of a filter are directly related through the
Fourier or Laplace transforms.

The Effect of Nonuniform Time Delay

Evaluating a transfer function as a function of frequency results in both a magnitude and
phase characteristic. Figure 2-17 shows the amplitude and phase response of a normalized
n = 3 Butterworth low-pass filter. Butterworth low-pass filters have a phase shift of
exactly n times —45° at the 3-dB frequency. The phase shift continuously increases as the
transition is made into the stopband and eventually approaches n times —90° at frequencies
far removed from the passband. Since the filter described by Figure 2-17 has a complexity
of n = 3, the phase shift is —135° at the 3-dB cutoff and approaches —270° in the stop-
band. Frequency scaling will transpose the phase characteristics to a new frequency range
as determined by the FSF.

It is well known that a square wave can be represented by a Fourier series of odd har-
monic components, as indicated in Figure 2-18. Since the amplitude of each harmonic is
reduced as the harmonic order increases, only the first few harmonics are of significance.
If a square wave is applied to a filter, the fundamental and its significant harmonics must
have a proper relative amplitude relationship at the filter’s output in order to retain the
square waveshape. In addition, these components must not be displaced in time with
respect to each other. Let’s now consider the effect of a low-pass filter’s phase shift on a
square wave.

or 0
~45+ -5
-90+ —10
"
4
g 135~ @ 15
[
©
-180r- —20 Phase shift
-225+ -25
270+ =30 | 1 \ |
(] 1 2 3 4
rad/s

FIGURE 2-17 The amplitude and phase response of an n = 3 Butterworth low-pass filter.
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FIGURE 2-18 The frequency analysis of a square wave.

If we assume that a low-pass filter has a linear phase shift between 0° at DC and n times —45°
at the cutoff, we can express the phase shift in the passband as

45
6= - f"ﬁ‘ (2-24)

where f, is any frequency in the passband, and f, is the 3-dB cutoff frequency.

A phase-shifted sine wave appears displaced in time from the input waveform. This dis-
placement is called phase delay and can be computed by determining the time interval rep-
resented by the phase shift, using the fact that a full period contains 360°. Phase delay can
then be computed by

!
ha = 360 f, (2-25)
or, as an alternate form,
B
Ta= ~w (2-26)

where S is the phase shift in radians (1 rad = 360/27 or 57.3°) and w is the input frequency
expressed in radians per second (w = 27f,).

Example 2-11 Effect of Nonlinear Phase on a Square Wave

Required:

Compute the phase delay of the fundamental and the third, fifth, seventh, and ninth
harmonics of a 1 kHz square wave applied to an n = 3 Butterworth low-pass filter
having a 3-dB cutoff of 10 kHz. Assume a linear phase shift with frequency in the
passband.

Result:
Using Equations (2-24) and (2-25), the following table can be computed:

Frequency ¢ T,
1 kHz —13.5° 37.5 us
3 kHz —40.5° 37.5 ps
5kHz —67.5° 37.5 us
7 kHz —94.5° 37.5 ps
9 kHz —121.5° 37.5 ws
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The phase delays of the fundamental
and each of the significant harmonics in
Example 2-11 are identical. The output wave-
form would then appear nearly equivalent to
the input except for a delay of 37.5 ps. If the (@
phase shift is not linear with frequency, the
ratio ¢/f, in Equation (2-25) is not constant,
so each significant component of the input
square wave would undergo a different delay.

This displacement in time of the spectral

components, with respect to each other,

introduces a distortion of the output wave-

form. Figure 2-19 shows some typical effects (b)

of a nonlinear phase shift upon a square FIGURE 2-19 The effect of a nonlinear phase:
wave. Most filters have nonlinear phase ver-  (a) an ideal square wave; and (b) a distorted square
sus frequency characteristics, so some wave- ~ Wave.

form distortion will usually occur for

complex input signals.

Not all complex waveforms have harmonically related spectral components. An amplitude-
modulated signal, for example, consists of a carrier and two sidebands, each sideband sep-
arated from the carrier by a modulating frequency. If a filter’s phase characteristic is linear
with frequency and intersects zero phase shift at zero frequency (DC), both the carrier and
the two sidebands will have the same delay in passing through the filter—thus, the output
will be a delayed replica of the input. If these conditions are not satisfied, the carrier and
both sidebands will be delayed by different amounts. The carrier delay will be in accor-
dance with the equation for phase delay:

B
Li= o

(2-26)

(The terms carrier delay and phase delay are used interchangeably.)

A new definition is required for the delay of the sidebands. This delay is commonly
called group delay and is defined as the derivative of phase versus frequency, which can be
expressed as

aB
dw
Linear phase shift results in constant group delay since the derivative of a linear func-
tion is a constant. Figure 2-20 illustrates a low-pass filter phase shift which is non-linear in
the vicinity of a carrier w, and the two sidebands: w. — ,, and w, + w,,. The phase delay
at w, is the negative slope of a line drawn from the origin to the phase shift corresponding
to w,, which is in agreement with Equation (2-26). The group delay at w_ is shown as the
negative slope of a line which is tangent to the phase response at w,. This can be mathe-
matically expressed as

T, = 2-27)

_ _dB

gd dw o

If the two sidebands are restricted to a region surrounding . and having a constant
group delay, the envelope of the modulated signal will be delayed by T,. Figure 2-21 com-
pares the input and output waveforms of an amplitude-modulated signal applied to the fil-
ter depicted by Figure 2-20. Note that the carrier is delayed by the phase delay, while the
envelope is delayed by the group delay. For this reason, group delay is sometimes called
envelope delay.
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FIGURE 2-20 The nonlinear phase shift of a low-
pass filter.

If the group delay is not constant over the bandwidth of the modulated signal, waveform
distortion will occur. Narrow-bandwidth signals are more likely to encounter constant
group delay than signals having a wider spectrum. It is common practice to use a group-
delay variation as a criterion to evaluate phase nonlinearity and subsequent waveform dis-
tortion. The absolute magnitude of the nominal delay is usually of little consequence.

Step Response of Networks. 1f we were to define a hypothetical ideal low-pass filter, it
would have the response shown in Figure 2-22. The amplitude response is unity from DC

Input

FIGURE 2-21 The effect of nonlinear phase on an AM signal.
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FIGURE 2-22  Anideal low-pass filter: (a) frequency response; (b) phase
shift; and (c) group delay.

to the cutoff frequency w,, and zero beyond the cutoff. The phase shift is a linearly increas-
ing function in the passband, where 7 is the order of the ideal filter. The group delay is con-
stant in the passband and zero in the stopband. If a unity amplitude step were applied to this
ideal filter at r = 0, the output would be in accordance with Figure 2-23. The delay of the
half-amplitude point would be n7/2w,, and the rise time, which is defined as the interval
required to go from zero amplitude to unity amplitude with a slope equal to that at the half-
amplitude point, would be equal to 7/w,_. Since rise time is inversely proportional to w_, a
wider filter results in reduced rise time. This proportionality is in agreement with a funda-
mental rule of thumb relating rise time to bandwidth, which is

0.35
T~
Tk

where T, is the rise time in seconds and f; is the 3-dB cutoff in hertz.

(2-28)

1.09

05

we

FIGURE 2-23 The step response of an ideal low-pass filter.
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FIGURE 2-24 The impulse response of an ideal low-pass filter.

A 9-percent overshoot exists on the leading edge. Also, a sustained oscillation occurs
having a period of 27r/w,_, which eventually decays, and then unity amplitude is established.
This oscillation is called ringing. Overshoot and ringing occur in an ideal low-pass filter,
even though we have linear phase. This is because of the abrupt amplitude roll-off at cut-
off. Therefore, both linear phase and a prescribed roll-off are required for minimum tran-
sient distortion.

Overshoot and prolonged ringing are both very undesirable if the filter is required to
pass pulses with minimum waveform distortion. The step-response curves provided for the
different families of normalized low-pass filters can be very useful for evaluating the tran-
sient properties of these filters.

Impulse Response. A unit impulse is defined as a pulse which is infinitely high and infini-
tesimally narrow, and has an area of unity. The response of the ideal filter of Figure 2-22 to a
unit impulse is shown in Figure 2-24. The peak output amplitude is w /77, which is proportional
to the filter’s bandwidth. The pulse width, 27/w,, is inversely proportional to the bandwidth.

An input signal having the form of a unit impulse is physically impossible. However, a
narrow pulse of finite amplitude will represent a reasonable approximation, so the impulse
response of normalized low-pass filters can be useful in estimating the filter’s response to
a relatively narrow pulse.

Estimating Transient Characteristics. Group-delay, step-response, and impulse-response
curves are given for the normalized low-pass filters discussed in the latter section of this chap-
ter. These curves are useful for estimating filter responses to nonsinusoidal signals. If the
input waveforms are steps or pulses, the curves may be used directly. For more complex
inputs, we can use the method of superposition, which permits the representation of a com-
plex signal as the sum of individual components. If we find the filter’s output for each indi-
vidual input signal, we can combine these responses to obtain the composite output.

Group Delay of Low-Pass Filters. When a normalized low-pass filter is frequency-
scaled, the delay characteristics are frequency-scaled as well. The following rules can be
applied to derive the resulting delay curve from the normalized response:

1. Divide the delay axis by 27f,, where f, is the filter’s 3-dB cutoff.
2. Multiply all points on the frequency axis by f..

The following example demonstrates the denormalization of a low-pass curve.

Example 2-12 Frequency Scaling the Delay of a Low-Pass Filter

Required:

Using the normalized delay curve of an n = 3 Butterworth low-pass filter given in
Figure 2-25a, compute the delay at DC and the delay variation in the passband if the
filter is frequency-scaled to a 3-dB cutoft of 100 Hz.
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FIGURE 2-25 The delay of an n = 3 Butterworth low-pass filter:
(a) normalized delay; and (b) delay with f, = 100 Hz.

Result:

To denormalize the curve, divide the delay axis by 277f. and multiply the frequency axis
by f., where f,is 100 Hz. The resulting curve is shown in Figure 2-25b. The delay at
DC is 3.2 ms, and the delay variation in the passband is 1.3 ms.

The nominal delay of a low-pass filter at frequencies well below the cutoff can be esti-
mated by the following formula:

. 125n
1.

where T is the delay in milliseconds, 7 is the order of the filter, and f, is the 3-dB cutoff in
hertz. Equation (2-29) is an approximation which usually is accurate to within 25 percent.

Group Delay of Bandpass Filters. When a low-pass filter is transformed to a narrow-
band bandpass filter, the delay is transformed to a nearly symmetrical curve mirrored about
the center frequency. As the bandwidth increases from the narrow-bandwidth case, the
symmetry of the delay curve is distorted approximately in proportion to the filter’s band-
width.

For the narrowband condition, the bandpass delay curve can be approximated by imple-
menting the following rules:

T

(2-29)

1. Divide the delay axis of the normalized delay curve by wBW, where BW is the 3-dB
bandwidth in hertz.

2. Multiply the frequency axis by BW/2.

3. A delay characteristic symmetrical around the center frequency can now be formed by
generating the mirror image of the curve obtained by implementing steps 1 and 2. The
total 3-dB bandwidth thus becomes BW.
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FIGURE 2-26 The delay of a narrow-band bandpass filter: (a) a low-
pass delay; and (b) a bandpass delay.

The following example demonstrates the approximation of a narrowband bandpass filter’s
delay curve.

Example 2-13 Estimate the Delay of a Bandpass Filter

Required:

Estimate the group delay at the center frequency and the delay variation over the pass-
band of a bandpass filter having a center frequency of 1000 Hz and a 3-dB bandwidth
of 100 Hz. The bandpass filter is derived from a normalized n = 3 Butterworth low-
pass filter.

Result:

The delay of the normalized filter is shown in Figure 2-25a. If we divide the delay axis
by #BW and multiply the frequency axis by BW/2, where BW = 100 Hz, we obtain the
delay curve of Figure 2-26a. We can now reflect this delay curve on both sides of the
center frequency of 1000 Hz to obtain Figure 2-26b. The delay at the center frequency
is 6.4 ms, while the delay variation over the passband is 2.6 ms.

The technique used in Example 2-13 to approximate a bandpass delay curve is valid for
bandpass filter Qs of 10 or more (f,/BW = 10). As the fractional bandwidth increases, the
delay becomes less symmetrical and peaks toward the low side of the center frequency, as
shown in Figure 2-27.

The delay at the center frequency of a bandpass filter can be estimated by

- 250n
BW

T (2-30)
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FIGURE 2-27 The delay of a wideband bandpass
filter.

where T is the delay in milliseconds. This approximation is usually accurate to within
25 percent.

A comparison of Figures 2-25b and 2-26b indicates that a bandpass filter has twice the
delay of the equivalent low-pass filter of the same bandwidth. This results from the low-
pass to bandpass transformation where a low-pass filter transfer function of order n always
results in a bandpass filter transfer function with an order 2n. However, a bandpass filter
is conventionally referred to as having the same order n as the low-pass filter it was
derived from.

Step Response of Low-Pass Filters. Delay distortion usually cannot be directly used
to determine the extent of the distortion of a modulated signal. A more direct parameter
would be the step response, especially where the modulation consists of an amplitude step
or pulse.

The two essential parameters of a filter’s step response are overshoot and ringing.
Overshoot should be minimized for accurate pulse reproduction. Ringing should decay as
rapidly as possible to prevent interference with subsequent pulses. Rise time and delay are
usually less important considerations.

Step-response curves for standard normalized low-pass filters are provided in the latter
part of this chapter. These responses can be denormalized by dividing the time axis by 27f,,
where f, is the 3-dB cutoff of the filter. Denormalization of the step response is shown in
the following example.

Example 2-14 Determining the Overshoot of a Low-Pass Filter

Required:

Determine the amount of overshoot of an n = 3 Butterworth low-pass filter having a
3-dB cutoff of 100 Hz. Also determine the approximate time required for the ringing
to decay substantially—for instance, the settling time.

Result:

The step response of the normalized low-pass filter is shown in Figure 2-28a. If the time
axis is divided by 2wf,, where f. = 100 Hz, the step response or Figure 2-28b is
obtained. The overshoot is slightly under 10 percent. After 25 ms, the amplitude will
have almost completely settled.

If the input signal to a filter is a pulse rather than a step, the step-response curves can
still be used to estimate the transient response, provided that the pulse width is greater than
the settling time.
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FIGURE 2-28 The step response of Example 2-14: (a) normalized
step response; and (b) denormalized step response.

Example 2-15 Determining the Pulse Response of a Low-Pass Filter

Required:
Estimate the output waveform of the filter of Example 2-14 if the input is the pulse of
Figure 2-29a.

Result:

Since the pulse width is in excess of the settling time, the step response can be used
to estimate the transient response. The leading edge is determined by the shape of the
denormalized step response of Figure 2-28b. The trailing edge can be derived by
inverting the denormalized step response. The resulting waveform is shown in
Figure 2-29b.

The Step Response of Bandpass Filters. The envelope of the response of a narrow
bandpass filter to a step of the center frequency is almost identical to the step response of
the equivalent low-pass filter having half the bandwidth. To determine this envelope shape,
denormalize the low-pass step response by dividing the time axis by 7BW, where BW is
the 3-dB bandwidth of the bandpass filter. The previous discussions of overshoot, ringing,
and so on, can be applied to the carrier envelope.
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FIGURE 2-29 The pulse response of Example 2-15:
(a) input pulse; and (b) output pulse.

Example 2-16 Determining the Step Response of a Bandpass Filter

Required:

Determine the envelope of the response to a 1000 Hz step for an n = 3 Butterworth
bandpass filter having a center frequency of 1000 Hz and a 3-dB bandwidth of
100 Hz.

Result:
Using the normalized step response of Figure 2-28a, divide the time axis by #BW,
where BW = 100 Hz. The results are shown in Figure 2-30.

0 28 256 384
(a)
fo
0 384 M
-
(b)

FIGURE 2-30 The bandpass response to a center
frequency step: (a) denormalized low-pass step
response; and (b) bandpass envelope response.
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The Impulse Response of Low-Pass Filters. If the duration of a pulse applied to a low-
pass filter is much less than the rise time of the filter’s step response, the filter’s impulse
response will provide a reasonable approximation to the shape of the output waveform.

Impulse-response curves are provided for the different families of low-pass filters.
These curves are all normalized to correspond to a filter having a 3-dB cutoff of 1 rad/s, and
have an area of unity. To denormalize the curve, multiply the amplitude by the FSF and
divide the time axis by the same factor.

It is desirable to select a normalized low-pass filter having an impulse response whose
peak is as high as possible. The ringing, which occurs after the trailing edge, should also
decay rapidly to avoid interference with subsequent pulses.

Example 2-17 Determining the Impulse Response of a Low-Pass Filter

Required:
Determine the approximate output waveform if a 100-ps pulse is applied to an n = 3
Butterworth low-pass filter having a 3-dB cutoff of 100 Hz.

Result:
The denormalized step response of the filter is given in Figure 2-28b. The rise time is
well in excess of the given pulse width of 100 s, so the impulse response curve should
be used to approximate the output waveform.

The impulse response of a normalized n = 3 Butterworth low-pass filter is shown
in Figure 2-31a. If the time axis is divided by the FSF and the amplitude is multiplied
by this same factor, the curve of Figure 2-31b results.

Since the input pulse amplitude of Example 2-17 is certainly not infinite, the amplitude
axis is in error. However, the pulse shape is retained at a lower amplitude. As the input
pulse width is reduced in relation to the filter rise time, the output amplitude decreases and
eventually the output pulse vanishes.

The Impulse Response of Bandpass Filters. The envelope of the response of a narrow-
band bandpass filter to a short tone burst of center frequency can be found by denormaliz-
ing the low-pass impulse response. This approximation is valid if the burst width is much
less than the rise time of the denormalized step response of the bandpass filter. Also, the cen-
ter frequency should be high enough so that many cycles occur during the burst interval.

To transform the impulse-response curve, multiply the amplitude axis by 7BW and divide
the time axis by the same factor, where BW is the 3-dB bandwidth of the bandpass filter. The
resulting curve defines the shape of the envelope of the filter’s response to the tone burst.

Example 2-18 Determining the Impulse Response of a Bandpass Filter

Required:

Determine the approximate shape of the response of an n = 3 Butterworth bandpass fil-
ter having a center frequency of 1000 Hz and a 3-dB bandwidth of 10 Hz to a tone burst
of the center frequency having a duration of 10 ms.

Result:

The step response of a normalized n = 3 Butterworth low-pass filter is shown in Figure
2-28a. To determine the rise time of the bandpass step response, divide the normalized
low-pass rise time by 7BW, where BW is 10 Hz. The resulting rise time is approxi-
mately 120 ms, which well exceeds the burst duration. Also, 10 cycles of the center fre-
quency occur during the burst interval, so the impulse response can be used to
approximate the output envelope. To denormalize the impulse response, multiply the
amplitude axis by 7BW and divide the time axis by the same factor. The results are
shown in Figure 2-32.
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FIGURE 2-31 The impulse response for Example 2-17: (a) normalized
response; and (b) denormalized response.

Effective Use of the Group-Delay, Step-Response, and Impulse-Response Curves.
Many signals consist of complex forms of modulation rather than pulses or steps, so the
transient response curves cannot be directly used to estimate the amount of distortion intro-
duced by the filters. However, the curves are useful as a figure of merit, since networks hav-
ing desirable step- or impulse-response behavior introduce minimal distortion to most
forms of modulation.

Examination of the step- and impulse-response curves in conjunction with group
delay indicates that a necessary condition for good pulse transmission is a flat group
delay. A gradual transition from the passband to the stopband is also required for low
transient distortion but is highly undesirable from a frequency-attenuation point of view.

In order to obtain a rapid pulse rise time, the higher-frequency spectral components
should not be delayed with respect to the lower frequencies. The curves indicate that low-
pass filters which do have a sharply increasing delay at higher frequencies have an impulse
response which comes to a peak at a later time.

When a low-pass filter is transformed to a high-pass, a band-reject, or a wideband band-
pass filter, the transient properties are not preserved. Lindquist and Zverev (see Bibliography)
provide computational methods for the calculation of these responses.
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FIGURE 2-32 The results of Example 2-18: (a) normalized low-
pass impulse response; and (b) impulse response of bandpass filter.

2.3 BUTTERWORTH MAXIMALLY FLAT
AMPLITUDE

The Butterworth approximation to an ideal low-pass filter is based on the assumption that
a flat response at zero frequency is more important than the response at other frequencies.
A normalized transfer function is an all-pole type having roots which all fall on a unit cir-
cle. The attenuation is 3 dB at 1 rad/s.

The attenuation of a Butterworth low-pass filter can be expressed by

. \2n
Ap = IOIOg{l + (5) } (2.31)

where w_ /w, is the ratio of the given frequency w, to the 3-dB cutoff frequency w_, and n is
the order of the filter.
For the more general case,

Ag = 10log(1 + Q) (2-32)

where () is defined by the following table.

The value () is a dimensionless ratio of frequencies or a normalized frequency. BW;
is the 3-dB bandwidth, and BW is the bandwidth of interest. At high values of (), the atten-
uation increases at a rate of 6n dB per octave, where an octave is defined as a frequency
ratio of 2 for the low-pass and high-pass cases, and a bandwidth ratio of 2 for bandpass and
band-reject filters.
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Filter Type Q
Low-pass /o,
High-pass w Jo,
Bandpass BW,/BW; i
Band-reject BW; z/BW,

The pole positions of the normalized filter all lie on a unit circle and can be computed by

QK —Dm QK=
sin n j cos o

, K=12...,n (2-33)

and the element values for an LC normalized low-pass filter operating between equal 1-()
terminations can be calculated by

. QK - Dm
LiyorCy =2 sin————,

K=1,2,...,n (2-34)
where (2K — 1)7/2n is in radians.

Equation (2-34) is exactly equal to twice the real part of the pole position of Equation
(2-33), except that the sign is positive.

Example 2-19 Calculating the Frequency Response, Pole Locations, and LC
Element Values of a Butterworth Low-Pass Filter

Required:
Calculate the frequency response at 1, 2, and 4 rad/s, the pole positions, and the LC ele-
ment values of a normalized n = 5 Butterworth low-pass filter.

Result:

(a) Using Equation (2-32) with n = 5, the following frequency-response table can be
derived:

Q Attenuation
1 3dB
2 30 dB
4 60 dB

(b) The pole positions are computed using Equation (2-33) as follows:

. (2K - Dm . Q2K-Dm
K —sin—— Jjeos————
1 —0.309 +70.951
2 —0.809 +70.588
3 -1
4 —0.809 —j 0.588
5 —0.309 —j0.951
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FIGURE 2-33 The Butterworth low-pass filter of Example 2-19: (a) frequency response; (b) pole loca-
tions; and (c¢) circuit configuration.

(c) The element values can be computed by Equation (2-34) and have the following

values:

L, =0.618H C,=0.618F
C,=16I8F L,=1618H
L;=2H or C;,=2F
C,=1618F L,=1618H
L, =0.618H C; =0.618F

The results of Example 2-19 are shown in Figure 2-33.

Chapter 11 provides pole locations and element values for both LC and active
Butterworth low-pass filters having complexities up to n = 10.

The Butterworth approximation results in a class of filters which have moderate atten-
uation steepness and acceptable transient characteristics. Their element values are more
practical and less critical than those of most other filter types. The rounding of the fre-
quency response in the vicinity of cutoff may make these filters undesirable where a sharp
cutoff is required; nevertheless, they should be used wherever possible because of their
favorable characteristics.

Figures 2-34 through 2-37 indicate the frequency response, group delay, impulse
response, and step response for the Butterworth family of low-pass filters normalized to a
3-dB cutoff of 1 rad/s.
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FIGURE 2-35 Group-delay characteristics for Butterworth filters. (From A. I. Zverev, Handbook
of Filter Synthesis [New York: John Wiley and Sons, 1967.] By permission of the publishers.)
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FIGURE 2-36 Impulse response for Butterworth filters. (From A. 1. Zverev, Handbook of Filter
Synthesis [New York: John Wiley and Sons, 1967.] By permission of the publishers.)
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FIGURE 2-37 Step response for Butterworth filters. (From A. 1. Zverev, Handbook of Filter
Synthesis [New York: John Wiley and Sons, 1967.] By permission of the publishers.)

2.4 CHEBYSHEV RESPONSE

If the poles of the normalized Butterworth low-pass transfer function were moved to
right by multiplying the real parts of the pole position by a constant k,, and the imaginary
parts by a constant k;, where both k’s are <1, the poles would now lie on an ellipse
instead of a unit circle. The frequency response would ripple evenly and have an attenu-
ation at 1 rad/s equal to the ripple. The resulting response is called the Chebyshev or
equiripple function.

The Chebyshev approximation to an ideal filter has a much more rectangular frequency
response in the region near cutoff than the Butterworth family of filters. This is accom-
plished at the expense of allowing ripples in the passband.

The factors k, and k; are computed by

k, = sinh A (2-35a)
k; = cosh A (2-35b)

The parameter A is given by
A= %sinh”% (2-36)

where e = V10Rs/10 — | (2-37)

and R is the ripple in decibels.
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FIGURE 2-38 A comparison of Butterworth and Chebyshev low-
pass filters.

Figure 2-38 compares the frequency response of an n = 3 Butterworth normalized low-
pass filter and the Chebyshev filter generated by applying Equations 2-35a and 2-35b. The
Chebyshev filter response has also been normalized so that the attenuation is 3 dB at 1 rad/s.
The actual 3-dB bandwidth of a Chebyshev filter computed using Equations 2-35a and
2-35bis cosh A,, where A, is given by

A = %cosh‘l(é) (2-37a)

The attenuation of Chebyshev filters can be expressed as
Ag = 101log[l + £2C2(O)] (2-38)

where C,(€)) is a Chebyshev polynomial whose magnitude oscillates between *1 for
) = 1. Table 2-1 lists the Chebyshev polynomials up to order n = 10.

At Q) = 1, Chebyshev polynomials have a value of unity, so the attenuation defined
by Equation (2-38) would be equal to the ripple. The 3-dB cutoff is slightly above
Q = 1 and is equal to cosh A,. In order to normalize the response equation so that 3 dB

TABLE 2-1 Chebyshev Polynomials

1. Q

2.207 -1

3.40° - 30

4. 80 —80% + 1

5. 16Q0° — 2003 + 5Q

6. 320° — 480* + 180% — 1

7. 64Q7 — 1120° + 56Q° — 7Q

8. 1280% — 256Q0° + 160Q* — 320? + 1

9. 256Q)° — 576Q) + 432Q0° — 1200 + 9Q
10. 512019 — 128008 + 1120Q° — 400Q* + 500 — 1
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of attenuation occurs at {) = 1, the () of Equation (2-38) is computed by using the fol-
lowing table:

Filter Type Q

Low-pass (cosh A)) w /o,
High-pass (coshA) w /w,
Bandpass (cosh A)) BW . /BW,
Band-reject (cosh A)) BW, ;x/BW,

Figure 2-39 compares the ratios of 3-dB bandwidth to ripple bandwidth (cosh A,) for
Chebyshev low-pass filters ranging fromn = 2ton = 10.

n 0.001 dB 0.005 dB 0.01 dB 0.05 dB
2 5.7834930 3.9027831 3.3036192 2.2685899
3 2.6427081 2.0740079 1.8771819 1.5120983
4 1.8416695 1.5656920 1.4669048 1.2783955
5 1.5155888 1.3510908 1.2912179 1.1753684
6 1.3495755 1.2397596 1.1994127 1.1207360
7 1.2531352 1.1743735 1.1452685 1.0882424
8 1.1919877 1.1326279 1.1106090 1.0673321
9 1.1507149 1.1043196 1.0870644 1.0530771

10 1.1215143 1.0842257 1.0703312 1.0429210
n 0.10 dB 0.25dB 0.50 dB 1.00 dB
2 1.9432194 1.5981413 1.3897437 1.2176261
3 1.3889948 1.2528880 1.1674852 1.0948680
4 1.2130992 1.1397678 1.0931019 1.0530019
5 1.1347180 1.0887238 1.0592591 1.0338146
6 1.0929306 1.0613406 1.0410296 1.0234422
7 1.0680005 1.0449460 1.0300900 1.0172051
8 1.0519266 1.0343519 1.0230107 1.0131638
9 1.0409547 1.0271099 1.0181668 1.0103963

10 1.0331307 1.0219402 1.0147066 1.0084182

(o}

3dB

Wripple  “348
FIGURE 2-39 The ratio of 3-dB bandwidth to ripple bandwidth.
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Odd-order Chebyshev LC filters have zero relative attenuation at DC. Even-order fil-
ters, however, have a loss at DC equal to the passband ripple. As a result, the even-order
networks must operate between unequal source and load resistances, whereas for odd n’s,
the source and the load may be equal.

The element values for an LC normalized low-pass filter operating between equal
1-Q) terminations and having an odd n can be calculated from the following series of
relations.

2A,cosh A

G="y — (2-39)
G, = MdeosiA (2-40)

=5 ~ = 4,3,4,...,N1 -

k Bk*lefl
where
.. B

Y= smh2n (2-41)
g=1 oth - (2-42)

M\ oM1737 -
A —sin kDT 0 2-43
(= sin—— =1,23,...,n (2-43)
B, =Y+ sinz(k%) k=1,23....n (2-44)

Coefficients G, through G, are the element values.

An alternate form of determining LC element values can be done by synthesizing the
driving-point impedance directly from the transfer function. Closed form formulas are
given in Matthaei (see Bibliography). These methods include both odd- and even-order n’s.

Example 2-20 Calculating the Pole Locations, Frequency Response, and LC
Element Values of a Chebyshev Low-Pass Filter

Required:
Compute the pole positions, the frequency response at 1, 2, and 4 rad/s, and the element
values of a normalized n = 5 Chebyshev low-pass filter having a ripple of 0.5 dB.

Result:

(a) To compute the pole positions, first solve for k. as follows:

e = VI10k/10 — | = 0.349 (2-37)

1.1

A = ysinh~! 5 = 0355 (2-36)
k, = sinh A = 0.3625 (2-35a)
k; = coshA = 1.0637 (2-35b)

Multiplication of the real parts of the normalized Butterworth poles of Example 2-19
by k, and the imaginary parts by ; results in

—0.1120 = j1.0116; —0.2933 = j0.6255; —0.3625
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To denormalize these coordinates for 3 dB at 1 rad/s, divide all values by cosh A,
where A, is given by
A, = 03428 (2-37a)
so cosh A; = 1.0593. The resulting pole positions are

—0.1057 = j0.9549; —0.2769 = j0.5905; —0.3422

(b) To calculate the frequency response, substitute a fifth-order Chebyshev polynomial
and ¢ = 0.349 into Equation (2-38). The following results are obtained:

Q A

1.0 3dB
2.0 45 dB
4.0 77 dB

(c) The element values are computed as follows:

A, = 0.309 (2-43)
B = 3.55 (2-42)
Y = 0.363 (2-41)

G, = 181 (2-39)

G, =130 (2-40)

G, = 2.69 (2-40)

G, = 130 (2-40)

Gy = 181 (2-40)

Coefficients G, through G represent the element values of a normalized
Chebyshev low-pass filter having a 0.5-dB ripple and a 3-dB cutoff of 1 rad/s.

Figure 2-40 shows the results of this example.

Chebyshev filters have a narrower transition region between the passband and stop-
band than Butterworth filters but have more delay variation in their passband. As the
passband ripple is made larger, the rate of roll-off increases, but the transient properties
rapidly deteriorate. If no ripples are permitted, the Chebyshev filter degenerates to a
Butterworth.

The Chebyshev function is useful where frequency response is a major consideration.
It provides the maximum theoretical rate of roll-off of any all-pole transfer function for
a given order. It does not have the mathematical simplicity of the Butterworth family,
which should be evident from comparing Examples 2-20 and 2-19. Fortunately, the com-
putation of poles and element values is not required since this information is provided in
Chapter 11.

Figures 2-41 through 2-54 show the frequency and time-domain parameters of Chebyshev
low-pass filters for ripples of 0.01, 0.1, 0.25, 0.5, and 1 dB, all normalized for a 3-dB cutoff
of 1 rad/s.

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2006 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.



SELECTING THE RESPONSE CHARACTERISTIC

52 CHAPTER TWO
+iB
~0.106 +j0.955

-0.277+j0.591

-0.342

0 1 2 4 ~0.277-0.59

—0.106 ~j0.955

(a) (b)
1.81 H 269 H 1.81 H 1.3 H 1.3 H

FIGURE 2-40 The Chebyshev low-pass filter of Example 2-20: (a) frequency response; (b) pole loca-
tions; and (c) circuit configuration.

2.5 BESSEL MAXIMALLY FLAT DELAY

Butterworth filters have fairly good amplitude and transient characteristics. The Chebyshev
family of filters offers increased selectivity but poor transient behavior. Neither approxi-
mation to an ideal filter is directed toward obtaining a constant delay in the passband.

The Bessel transfer function has been optimized to obtain a linear phase—in other
words, a maximally flat delay. The step response has essentially no overshoot or ringing,
and the impulse response lacks oscillatory behavior. However, the frequency response is
much less selective than in the other filter types.

The low-pass approximation to a constant delay can be expressed as the following gen-
eral transfer function:

1

Tts) = sinh s + cosh s

(2-45)

If a continued-fraction expansion is used to approximate the hyperbolic functions
and the expansion is truncated at different lengths, the Bessel family of transfer functions
will result.
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FIGURE 2-42 Attenuation characteristics for Chebyshev filters with 0.1-dB ripple. (From A. I. Zverev, Handbook of Filter Synthesis [New York: John Wiley

and Sons, 1967.] By permission of the publishers.)
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FIGURE 2-44 Attenuation characteristics for Chebyshev filters with 0.5-dB ripple. (From A. 1. Zverev, Handbook of Filter Synthesis [New York: John Wiley
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FIGURE 2-46 Group-delay characteristics for Chebyshev filters with 0.01-dB ripple. (From
A. 1. Zverev, Handbook of Filter Synthesis [New York: John Wiley and Sons, 1967.] By permis-
sion of the publishers.)

A crude approximation to the pole locations can be found by locating all the poles on
a circle and separating their imaginary parts by 2/n, as shown in Figure 2-55. The verti-
cal spacing between poles is equal, whereas in the Butterworth case the angles were
equal.

The relative attenuation of a Bessel low-pass filter can be approximated by

w_ \2
Ag = 3(3) (2-46)

This expression is reasonably accurate for w /w, ranging between 0 and 2.

Figures 2-56 through 2-59 indicate that as the order n is increased, the region of flat
delay is extended farther into the stopband. However, the steepness of roll-off in the tran-
sition region does not improve significantly. This restricts the use of Bessel filters to appli-
cations where the transient properties are the major consideration.
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FIGURE 2-48 Group-delay characteristics for Chebyshev filters with 0.5-dB ripple. (From A. 1. Zverev, Handbook of Filter Synthesis [New York:

John Wiley and Sons, 1967.] By permission of the publishers.)
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FIGURE 2-49 TImpulse response for Chebyshev filters with 0.01-dB ripple. (From A. I. Zverev,
Handbook of Filter Synthesis [New York: John Wiley and Sons, 1967.] By permission of the publishers.)
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FIGURE 2-50 Step response for Chebyshev filters with 0.01-dB ripple. (From A. I. Zverev,
Handbook of Filter Synthesis [New York: John Wiley and Sons, 1967.] By permission of the publishers.)
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FIGURE 2-51 Impulse response for Chebyshev filters with 0.1-dB ripple. (From A. 1. Zverev,
Handbook of Filter Synthesis [New York: John Wiley and Sons, 1967.] By permission of the publishers.)
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FIGURE 2-52  Step response for Chebyshev filters with 0.1-dB ripple. (From A. I. Zverev, Handbook
of Filter Synthesis [New York: John Wiley and Sons, 1967.] By permission of the publishers.)
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FIGURE 2-53 Impulse response for Chebyshev filters with 0.5-dB ripple. (From A. I. Zverev,
Handbook of Filter Synthesis [New York: John Wiley and Sons, 1967.] By permission of the publishers.)
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FIGURE 2-54 Step response for Chebyshev filters with 0.5-dB ripple. (From A. I. Zverev, Handbook
of Filter Synthesis [New York: John Wiley and Sons, 1967.] By permission of the publishers.)
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FIGURE 2-55 Approximate Bessel pole locations.

A similar family of filters is the gaussian type. However, the gaussian phase response
is not as linear as the Bessel for the same number of poles, and the selectivity is not
as sharp.

2.6 LINEAR PHASE WITH EQUIRIPPLE ERROR

The Chebyshev (equiripple amplitude) function is a better approximation of an ideal ampli-
tude curve than the Butterworth. Therefore, it stands to reason that an equiripple approxi-
mation of a linear phase will be more efficient than the Bessel family of filters.

Figure 2-60 illustrates how a linear phase can be approximated to within a given ripple
of & degrees. For the same 7, the equiripple-phase approximation results in a linear phase
and, consequently, a constant delay over a larger interval than the Bessel approximation.
Also the amplitude response is superior far from cutoff. In the transition region and below
cutoff, both approximations have nearly identical responses.

As the phase ripple € is increased, the region of constant delay is extended farther into
the stopband. However, the delay develops ripples. The step response has slightly more
overshoot than Bessel filters.

A closed-form method for computation of the pole positions is not available. The pole
locations tabulated in Chapter 11 were developed by iterative techniques. Values are pro-
vided for phase ripples of 0.05° and 0.5°, and the associated frequency and time-domain
parameters are given in Figures 2-61 through 2-68.

2.7 TRANSITIONAL FILTERS

The Bessel filters discussed in Section 2.5 have excellent transient properties but poor
selectivity. Chebyshev filters, on the other hand, have steep roll-off characteristics but poor
time-domain behavior. A transitional filter offers a compromise between a gaussian filter,
which is similar to the Bessel family, and Chebyshev filters.
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FIGURE 2-57 Group-delay characteristics for maximally flat delay (Bessel) filters. (From A. L.
Zverev, Handbook of Filter Synthesis [New York: John Wiley and Sons, 1967.] By permission of the
publishers.)

Transitional filters have a near linear phase shift and smooth amplitude roll-off in the
passband. Outside the passband, a sharp break in the amplitude characteristics occurs.
Beyond this breakpoint, the attenuation increases quite abruptly in comparison with Bessel
filters, especially for the higher n’s.

In the tables in Chapter 11, transnational filters are listed which have gaussian charac-
teristics to both 6 dB and 12 dB. The transient properties of the gaussian to 6-dB filters are
somewhat superior to those of the Butterworth family. Beyond the 6-dB point, which

06

[ 8

FIGURE 2-58 Impulse response for maximally flat delay (Bessel) filters. (From A. I. Zverev,
Handbook of Filter Synthesis [New York: John Wiley and Sons, 1967.] By permission of the publishers.)
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FIGURE 2-59 Step response for maximally flat delay (Bessel) filters. (From A. 1. Zverev, Handbook
of Filter Synthesis [New York: John Wiley and Sons, 1967.] By permission of the publishers.)

occurs at approximately 1.5 rad/s, the attenuation characteristics are nearly comparable
with Butterworth filters. The gaussian to 12-dB filters have time-domain parameters far
superior to those of Butterworth filters. However, the 12-dB breakpoint occurs at 2 rad/s,
and the attenuation characteristics beyond this point are inferior to those of Butterworth
filters.

The transnational filters tabulated in Chapter 11 were generated using mathematical
techniques which involve interpolation of pole locations. Figures 2-69 through 2-76 indi-
cate the frequency and time-domain properties of both the gaussian to 6-dB and gaussian
to 12-dB transitional filters.

Phase shift

-—w

Frequency

FIGURE 2-60 An equiripple linear-phase approximation.
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FIGURE 2-61 Attenuation characteristics for linear phase with equiripple error filters (phase error =0.05°). (From A. L. Zverev, Handbook of Filter

Synthesis [New York: John Wiley and Sons, 1967.] By permission of the publishers.)
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FIGURE 2-62 Attenuation characteristics for linear phase with equiripple error filters (phase error =0.5°). (From A. L. Zverev, Handbook of Filter Synthesis
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FIGURE 2-63 Group-delay characteristics for linear phase with equiripple error filters (phase error =
0.05°). (From A. L. Zverev, Handbook of Filter Synthesis [New York: John Wiley and Sons, 1967.] By
permission of the publishers.)

2.8 SYNCHRONOUSLY TUNED FILTERS

Synchronously tuned filters are the most basic filter type and are the easiest to construct and
align. They consist of identical multiple poles. A typical application is in the case of a band-
pass amplifier, where a number of stages are cascaded, with each stage having the same
center frequency and Q.

The attenuation of a synchronously tuned filter can be expressed as

Ag = l0nlog [1 + 2" — 1)Q?] (2-47)

Equation (2-47) is normalized so that 3 dB of attenuation occurs at () = 1.

5
a — AT e e "~

o - — AN

& B o =2UNEN

5 ] — N7 N\

©3 ~— T = —— AN \ \

=] HESSRANARWAN

= 1 T~ N

:, NAYAWNN
EnuuSRENANANNENNAN
1 \\\ N3 \ a N \\\

B — 1 R s, —— S Co—

0O 10 20 30

Q ————

FIGURE 2-64 Group-delay characteristics for linear phase with equiripple error filters (phase error =
0.5°). (From A. L. Zverev, Handbook of Filter Synthesis [New York: John Wiley and Sons, 1967.] By
permission of the publishers.)
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FIGURE 2-65 Impulse response for linear phase with equiripple error filters (phase error = 0.05°).
(From A. 1. Zverev, Handbook of Filter Synthesis [New York: John Wiley and Sons, 1967.] By per-
mission of the publishers.)
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FIGURE 2-66 Step response for linear phase with equiripple error filters (phase error = 0.05°).
(From A. I. Zverev, Handbook of Filter Synthesis [New York: John Wiley and Sons, 1967.] By per-
mission of the publishers.)
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FIGURE 2-67 Impulse response for linear phase with equiripple error filters (phase error = 0.5°).
(From A. 1. Zverev, Handbook of Filter Synthesis [New York: John Wiley and Sons, 1967.] By per-
mission of the publishers.)
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FIGURE 2-68 Step response for linear phase with equiripple error filters (phase error = 0.05°).
(From A. 1. Zverev, Handbook of Filter Synthesis [New York: John Wiley and Sons, 1967.] By per-
mission of the publishers.)
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FIGURE 2-72 Group-delay characteristics for transitional filters (gaussian to 12 dB). (From A. I.
Zverev, Handbook of Filter Synthesis [New York: John Wiley and Sons, 1967.] By permission of the

publishers.)
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FIGURE 2-73 Impulse response for transitional filters (gaussian to 6 dB). (From A. 1. Zverev,
Handbook of Filter Synthesis [New York: John Wiley and Sons, 1967.] By permission of the publishers.)
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FIGURE 2-74 Step response for transitional filters (gaussian to 6 dB). (From A. I. Zverev,
Handbook of Filter Synthesis [New York: John Wiley and Sons, 1967.] By permission of the publishers.)
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FIGURE 2-75 Impulse response for transitional filters (gaussian to 12 dB). (From A. 1. Zverev,
Handbook of Filter Synthesis [New York: John Wiley and Sons, 1967.] By permission of the publishers.)
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FIGURE 2-76 Step response for transitional filters (gaussian to 12 dB). (From A. I. Zverev,
Handbook of Filter Synthesis [New York: John Wiley and Sons, 1967.] By permission of the publishers.)

The individual section Q can be defined in terms of the composite circuit Q requirement
using the following relationship:

Qseclion = Qoverall v 2”” =1 (2'48)

Alternatively, we can state that the 3-dB bandwidth of the individual sections is reduced
by the shrinkage factor (2 — 1)"2. The individual section Q is less than the overall Q,
whereas in the case of nonsynchronously tuned filters the section Os may be required to be
much higher than the composite Q.

Example 2-21 Calculate the Attenuation and Section Q’s of a Synchronously Tuned
Bandpass Filter

Required:

A three-section synchronously tuned bandpass filter is required to have a center fre-
quency of 10 kHz and a 3-dB bandwidth of 100 Hz. Determine the attenuation corre-
sponding to a bandwidth of 300 Hz, and calculate the Q of each section.

Result:

(a) The attenuation at the 300Hz bandwidth can be computed as
Ag = 10nlog[1 + 2" — 1)(?] = 15.7dB (2-47)

where n = 3 and (), the bandwidth ratio, is 300 Hz/100 Hz, or 3. (Since the filter
is a narrowband type, conversion to a geometrically symmetrical response require-
ment was not necessary.)
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(b) The Q of each section is
Qseclion = Qoverall v 21/” —1=73l1 (2'48)

where Q,,...; i 10 kHz/100 Hz, or 100.

overall

The synchronously tuned filter of Example 2-21 has only 15.7 dB of attenuation at a
normalized frequency ratio of 3, and for n = 3. Even the gradual roll-off characteristics of
the Bessel family provide better selectivity than synchronously tuned filters for equivalent
complexities.

The transient properties, however, are near optimum. The step response exhibits no
overshoot at all and the impulse response lacks oscillatory behavior.

The poor selectivity of synchronously tuned filters limits their application to circuits
requiring modest attenuation steepness and simplicity of alignment. The frequency and
time-domain characteristics are illustrated in Figures 2-77 through 2-80.

2.9 ELLIPTIC-FUNCTION FILTERS

All the filter types previously discussed are all-pole networks. They exhibit infinite rejec-
tion only at the extremes of the stopband. Elliptic-function filters have zeros as well as
poles at finite frequencies. The location of the poles and zeros creates equiripple behavior
in the passband similar to Chebyshev filters. Finite transmission zeros in the stopband
reduce the transition region so that extremely sharp roll-off characteristics can be obtained.
The introduction of these transmission zeros allows the steepest rate of descent theoreti-
cally possible for a given number of poles.

Figure 2-81 compares a five-pole Butterworth, a 0.1-dB Chebyshev, and a 0.1-dB
elliptic-function filter having two transmission zeros. Clearly, the elliptic-function fil-
ter has a much more rapid rate of descent in the transition region than the other filter
types.

Improved performance is obtained at the expense of return lobes in the stopband.
Elliptic-function filters are also more complex than all-pole networks. Return lobes usually
are acceptable to the user, since a minimum stopband attenuation is required and the cho-
sen filter will have return lobes that meet this requirement. Also, even though each filter
section is more complex than all-pole filters, fewer sections are required.

The following definitions apply to normalized elliptic-function low-pass filters and are
illustrated in Figure 2-82:

Rz = the passband ripple
A
Q, = the lowest stopband frequency at which A,;, occurs

= the minimum stopband attenuation in decibels

min

The response in the passband is similar to that of Chebysheyv filters except that the atten-
uation at 1 rad/s is equal to the passband ripple instead of 3 dB. The stopband has trans-
mission zeros, with the first zero occurring slightly beyond (). All returns (comebacks) in
the stopband are equal to A ;..

The attenuation of elliptic filters can be expressed as

Ag = 101og[l + £2Z2(O)] (2-49)
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FIGURE 2-78 Group-delay characteristics for synchronously tuned filters. (From A. 1. Zverev,
Handbook of Filter Synthesis [New York: John Wiley and Sons, 1967.] By permission of the publishers.)

where ¢ is determined by the ripple (Equation 2-37) and Z,(£2) is an elliptic function of the
nth order. Elliptic functions have both poles and zeros and can be expressed as

Q(u% - QZ)(aﬁ -0 ... (a,zn - 03

Z Q) = 2-
LD (1 = a3 — a3 ... (1 — a2 (2-50)
where n is odd and m = (n — 1)/2, or
ai— Q)@a: - P ... @ — O
PGl VI Rk s

(1 = a30hH1 — a3 ... (1 — a20?)

where n is even and m = n/2.
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FIGURE 2-79 Impulse response for synchronously tuned filters. (From A. I. Zverev, Handbook of
Filter Synthesis [New York: John Wiley and Sons, 1967.] By permission of the publishers.)

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)

Copyright © 2006 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.



SELECTING THE RESPONSE CHARACTERISTIC

82 CHAPTER TWO

4 6 8

t ———

FIGURE 2-80 Step response for synchronously tuned filters. (From A. 1. Zverev, Handbook of
Filter Synthesis [New York: John Wiley and Sons, 1967.] By permission of the publishers.)

The zeros of Z, are a,, a,, . . ., a,, whereas the poles are 1/a,,1/a,, . . ., 1/a,, The reci-
procal relationship between the poles and zeros of Z, results in equiripple behavior in both
the stopband and the passband.

The values for a, through a,, are derived from the elliptic integral, which is defined as

/2
K, = [ S — (2-52)
o V1 — k%in?6

Numerical evaluation may be somewhat difficult. Glowatski (see Bibliography) con-
tains tables specifically intended for determining the poles and zeros of Z (€2).

Butterworth

Ideal
low-pass
~201- filter

rad/s

FIGURE 2-81 A comparison of n = 5 Butterworth, Chebyshev, and
elliptic-function filters.
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Amin

Q

FIGURE 2-82 Normalized elliptic-function low-pass
filter response.

Elliptic-function filters have been extensively tabulated by Saal and Zverev (see
Bibliography). The basis for these tabulations was the order n and the parameters 6
(degrees) and reflection coefficient p (percent).

Elliptic-function filters are sometimes called Cauer filters in honor of network theorist
Professor Wilhelm Cauer. They were tabulated using the following convention

Cnpb

where C represents Cauer, n is the filter order, p is the reflection coefficient, and 6 is the
modular angle. A fifth-order filter having a p of 15 percent and a 6 of 29° would be
described as CO5 15 6 = 29°.

The angle 6 determines the steepness of the filter and is defined as

. 1
= qip~1— -
6 = sin o (2-53)
or, alternatively, we can state
1
O, = Sn o (2-54)

Table 2-2 gives some representative value of 6 and €} .

TABLE2-2 O, vs.0

0, degrees QO
0 0
10 5.759
20 2.924
30 2.000
40 1.556
50 1.305
60 1.155
70 1.064
80 1.015
90 1.000
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TABLE 2-3 pvs. R;; VSWR, and &

p, % Ris VSWR & (ripple factor)
1 0.0004343 1.0202 0.0100
2 0.001738 1.0408 0.0200
3 0.003910 1.0619 0.0300
4 0.006954 1.0833 0.0400
5 0.01087 1.1053 0.0501
8 0.02788 1.1739 0.0803

10 0.04365 1.2222 0.1005
15 0.09883 1.3529 0.1517
20 0.1773 1.5000 0.2041
25 0.2803 1.6667 0.2582
50 1.249 3.0000 0.5774

The parameter p, the reflection coefficient, can be derived from

_VSWR -1 _ | ¢
P=VswR +1 N1+ e (2-55)

where VSWR is the standing-wave ratio and ¢ is the ripple factor (see Section 2.4 on the
Chebyshev response). The passband ripple and reflection coefficient are related by

Ry = —10log(1 — p?) (2-56)

Table 2-3 interrelates these parameters for some typical values of the reflection coeffi-
cient, where p is expressed as a percentage.

As the parameter 0 approaches 90°, the edge of the stopband {2, approaches unity. For 0s
near 90°, extremely sharp roll-offs are obtained. However, for a fixed n, the stopband attenu-
ation A, is reduced as the steepness increases. Figure 2-83 shows the frequency response of
an n = 3 elliptic filter for a fixed ripple of 1 dB (p = 50 percent) and different values of 6.

o] 1 2 3 4
Q
FIGURE 2-83 The elliptic-function low-pass filter response for n = 3 and
Ry = 1dB.
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FIGURE 2-84 Delay characteristics of elliptic-function filters n = 3, 4, 5, and
with an A ;, of 60 dB. (From Lindquist, C. S. (1977). Active Network Design.
California: Steward and Sons.)

For a given 6 and order n, the stopband attenuation parameter A, increases as the rip-
ple is made larger. Since the poles of elliptic-function filters are approximately located on
an ellipse, the delay curves behave in a similar manner to those of the Chebyshev family.
Figure 2-84 compares the delay characteristics of n = 3, 4, and 5 elliptic filters, all having
an A, of 60 dB. The delay variation tends to increase sharply with increasing ripple and
filter order n.

The factor p determines the input impedance variation with frequency of LC elliptic fil-
ters, as well as the passband ripple. As p is reduced, a better match is achieved between the
resistive terminations and the filter impedance. Figure 2-85 illustrates the input impedance
variation with frequency of a normalized n = 5 elliptic-function low-pass filter. At DC,
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FIGURE 2-85 Impedance variation in the passband of
anormalized n = 5 elliptic-function low-pass filter.

the input impedance is 1 () resistive. As the frequency increases, both positive and neg-
ative reactive components appear. All maximum values are within the diameter of a circle
whose radius is proportional to the reflection coefficient p. As the complexity of the filter
is increased, more gyrations occur within the circle.

The relationship between p and filter input impedance is defined by

R —Z7,|?

2 — ity -
o= [+ 5 s

where R is the resistive termination and Z,, is the filter input impedance.
The closeness of matching between R and Z,, is frequently expressed in decibels as a
returns loss, which is defined as

A, = 20log

1
p‘ (2-58)

Using Filter Solutions (Book Version) Software for Design of Elliptic Function Low-
Pass Filters. Previous editions of this book have contained extensive numerical tables of
normalized values which have to be scaled to the operating frequencies and impedance lev-
els during the design process. This is no longer the case.

A program called Filter Solutions is included on the CD-ROM. This program is lim-
ited to Elliptic Function LC filters (up to n = 10) and is a subset of the complete pro-
gram which is available from Nuhertz Technologies® (www.nuhertz.com). The reader
is encouraged to obtain the full version, which in addition to passive implementations
covers many filter polynomial types, and includes transmission line, active, switched
capacitor, and digital along with many very powerful features. It has also been inte-
grated into Applied Wave Research’s (AWR) popular Microwave Office software.

The program is quite intuitive and self-explanatory; thus, the reader is encouraged to
explore its many features on his/her own. Nevertheless, all design examples using this pro-
gram will elaborate on its usage and provide helpful hints.
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You can extract and install this program by running FSBook.exe, which is contained
on the CD-ROM. All examples in the book using Filter Solutions are based on start-
ing with the program default settings. To restore these settings, click the Initialize
button, then Default, and then Save.

Example 2-22 Determining the Order of an Elliptic Function Filter using Filter
Solutions

Required:

Determine the order of an elliptic-function filter having a passband ripple less than
0.2 dB up to 1000 Hz, and a minimum rejection of 60 dB at 1300 Hz and above. Use
Filter Solutions.

Result:

(a) Open Filter Solutions.
Check the Stop Band Freq box.
Enter 0.2 in the Pass Band Ripple(dB) box.
Enter 1000 in the Pass Band Freq box.
Enter 1300 in the Stop Band Freq box.
Check the Frequency Scale Hertz box.

(b) Click the Set Order control button to open the second panel.
Enter 60 for the Stop band Attenuation (dB).
Click the Set Minimum Order button and then click Close.

7 Order is displayed on the main control panel.

~

(c) The result is that a 7th order elliptic-function low-pass filter provides the required
attenuation. By comparison, a 27th-order Butterworth low-pass filter would be
needed to meet the requirements of Example 2-22, so the elliptic-function family is
a must for steep filter requirements.

Using the ELI 1.0 Program for the Design of Odd-Order Elliptic-Function Low-Pass
Filters up to the 31st Order. This program allows the design of odd-order elliptic func-
tion LC low-pass filters up to a complexity of 15 nulls (transmission zeros), or the 31st order.
It is based on an algorithm developed by Amstutz. (See Bibliography)

The program inputs are passband edge (Hz), stopband edge (Hz), number of nulls (up to
15), stopband rejection in dB, and source and load terminations (which are always equal).
The output parameters are critical Q (theoretical minimum Q), passband ripple (dB), nomi-
nal 3-dB cutoff and a list of component values along with resonant null frequencies.

To install the program, first copy ELI1.zip from the CD-ROM to the desktop and then
double-click it to extract it to the C:\ root directory. A folder “elil” will be created in
the C:\ root directory, and a desktop shortcut “elil.bat” will be created on the desktop.
(If not, go to the C:\elil folder and create a shortcut on the desktop from “elil.bat”.

To run the program, double-click the “elil.bat” shortcut and enter inputs as requested.
Upon completing the execution, a dataout.text file will open using Notepad and containing
the resulting circuit description.
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If the number of nulls is excessive for the response requirements (indicated by zero
passband ripple) the final capacitor may have a negative value as a result of the algorithm.
Reduce the number of nulls, increase the required attention, define a steeper filter, or do a
combination of these.

2.10 MAXIMALLY FLAT DELAY WITH CHEBYSHEV
STOPBAND

The Bessel, linear phase with equiripple error, and transitional filter families all exhibit
either maximally flat or equiripple-delay characteristics over most of the passband and,
except for the transitional type, even into the stopband. However, the amplitude versus fre-
quency response is far from ideal. The passband region in the vicinity of the cutoff is very
rounded, while the stopband attenuation in the first few octaves is poor.

Elliptic-function filters have an extremely steep rate of descent into the stopband because
of transmission zeros. However, the delay variation in the passband is unacceptable when
the transient behavior is significant.

The maximally flat delay with Chebyshev stopband filters is derived by introducing
transmission zeros into a Bessel-type transfer function. The constant delay properties in the
passband are retained. However, the stopband rejection is significantly improved because
of the effectiveness of the transmission zeros.

The step response exhibits no overshoot or ringing, and the impulse response has essen-
tially no oscillatory behavior. Constant delay properties extend well into the stopband for
higher-order networks.

Normalized tables of element values for the maximally flat delay with the Chebyshev
stopband family of filters are provided in Table 11-56. These tables are normalized so that
the 3-dB response occurs at 1 rad/s. The tables also provide the delay at DC and the nor-
malized frequencies corresponding to a 1-percent and 10-percent deviation from the delay
at DC. The amplitude response below the 3-dB point is identical to the attenuation charac-
teristics of the Bessel filters shown in Figure 2-56.
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Source: ELECTRONIC FILTER DESIGN HANDBOOK

CHAPTER 3
LOW-PASS FILTER DESIGN

3.1 LC LOW-PASS FILTERS

All-Pole Filters

LC low-pass filters can be designed from the tables provided in Chapter 11 or the software
available on the CD-ROM. A suitable filter must first be selected using the guidelines
established in Chapter 2, however. The chosen design is then frequency- and impedance-
scaled to the desired cutoff and impedance level when using the tables, or directly designed
when using the software.

Example 3-1 Design of an LC Low-Pass Filter from the Tables
Required:

An LC low-pass filter

3 dB at 1000 Hz

20-dB minimum at 2000 Hz
R, =R, = 600 Q

Result:

(a) To normalize the low-pass requirement, compute A,.

Ji 2000 Hz
A= F T l000H, ~ 2 1D

(b) Choose a normalized low-pass filter from the curves of Chapter 2 having at least
20 dB of attenuation at 2 rad/s.

Examination of the curves indicates that an n = 4 Butterworth or third-order 0.1-dB
Chebyshev satisfies this requirement. Let us select the latter, since fewer elements are
required.

(c) Table 11-28 contains element values for normalized 0.1-dB Chebyshev LC filters
ranging from n = 2 through n = 10. The circuit corresponding to n = 3 and equal
source and load resistors (R, = 1 ) is shown in Figure 3-1a.
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10 Lo =1.5937 H 600 Q 0.152 H

C3=

14328 F
Cy=
T1,4328 F

2% ~O-

(2)

FIGURE 3-1 The results of Example 3-1: (a) normalized filter from Table 11-28; (b) frequency- and
impedance-scaled filter.

(d) Denormalize the filter using a Z of 600 and a frequency-scaling factor (FSF) of 27f,

or 6280.
R =R, = 600Q (2-8)
, LXZ 15937 X600
Ly =5y = g = 0152H (2-9)
o4 _C 14328 _ )
€1 =6 TESEx 2z~ 6280 x 600 0380 BE (2-10)

The resulting filter is shown in Figure 3-1b.

The normalized filter used in Example 3-1 is shown in Table 11-28 (in Chapter 11) as
having a current source input with a parallel resistor of 1 {). The reader will recall that
Thévenin’s theorems permit the replacement of this circuit with a voltage source having an
equivalent series source resistance.

Elliptic-Function Filters

Elliptic Function Low-Pass Filters Using the Filter Solutions Program. The follow-
ing example illustrates the design of an elliptic-function low-pass filter using the Filter
Solutions program introduced in Section 2.9.

Example 3-2 Design of an Elliptic Function Low-Pass Filter using Filter Solutions
Program

Required:

LC low-pass filter

0.25-dB maximum ripple DC to 100 Hz
60-dB minimum at 132 Hz

R, =R, =900 Q

Result:

(a) Open Filter Solutions.

Check the Stop Band Freq box.

Enter 0.18 in the Pass Band Ripple(dB) box.
Enter 100 in the Pass Band Freq box.

Enter 132 in the Stop Band Freq box.
Check the Frequency Scale Hertz box.
Enter 900 for Source Res and Load Res.

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2006 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.



LOW-PASS FILTER DESIGN

LOW-PASS FILTER DESIGN 91

(b) Click the Set Order control button to open the second panel.

Enter 60 for Stop band Attenuation (dB).
Click the Set Minimum Order button and then click Close.
7 Order is displayed on the main control panel.

(¢) Click the Circuits button.

Two schematics are presented and shown in Figure 3-2. The circuit of Figure 3-2a
has a shunt capacitor as its first element, and the circuit of Figure 3-2b has a series
inductor as its first element. Normally, one would select the configuration having
less inductors, which is the first circuit.

Note: All examples in the book using Filter Solutions are based on starting with program default
settings. To restore these settings click the Initialize button, then Default, and then click Save.

Using the “ELI 1.0” Program for Designing Odd-Order Elliptic Function Low-Pass
Filters up to the 31st Order. The following example illustrates the design of an elliptic-
function low-pass filter using the ELI1.0 program first introduced in Section 2.9. This program
allows the design of odd-order elliptic function LC low-pass filters up to a complexity

1.159 H 1.654 H 1.815H
Y'Y Y
900.0 Q
» 1.214 uF L 2 621.9 nF L 2 207.8nF ¢
[ Ty o
134.2 Hz 156.9 Hz 259.2 Hz g
o
T1.501 uF Tz 837 uF T3.342 uF T2.196 uF S

(@)

503.7 mH 168.3 mH =
s
o
(<]
1.431 uF 2.042 uF 2.240 uF
134.2 Hz 156.9 Hz 259.2 Hz
0.00 :
0 1 200 300 400 500
~20.00 1
D —40.00 4
—60.00 A /‘_
~80.00 e

(c)

FIGURE 3-2 Filters of Example 3-2: (a) first element shunt capacitor; (b) first element series inductor; and
(c) a frequency response.
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of 15 nulls (transmission zeros) or the 31st order. It is based on an algorithm developed by
Amstutz (see Bibliography).

The program inputs are passband edge (Hz), stopband edge (Hz), number of nulls
(up to 15), stopband rejection in dB, and source and load terminations (which are always
equal). The output parameters are critical Q (theoretical minimum Q), passband ripple (dB),
nominal 3dB cutoff, and a list of component values along with resonant null frequencies.

If the number of nulls is excessive for the response requirements (indicated by zero
passband ripple), the final capacitor may have a negative value as a result of the algorithm.
Reduce the number of nulls, increase the required attention, or define a steeper filter—or
use a combination of these.

Example 3-3 Design of an Elliptic Function Low-Pass Filter using ELI 1.0 Program

Required:

An LC low-pass filter

0.25-dB maximum ripple DC to 100 Hz
35-dB minimum at 105 Hz

R, =R, = 10kQ

Result:

To run, double-click the “elil.bat” shortcut and enter inputs as requested. Upon com-
pleting execution, a dataout.text file will open (as shown next using Notepad) and will
contain the resulting circuit description. Note that the capacitors are all listed in one col-
umn, the inductors in another, and the corresponding resonant frequencies in a third col-
umn lined up with the parallel tuned circuits.

1.70060E + 001 1.09718E + 001  6.44888E + 000  7.10954E + 000  9.07304E + 000

2.65878E - 008 1.71158E - 007 3.54372E - 007 3.05769E - 007 1.41281E - 007

™ 10 kQ
6.86017E - 008 | 1.55000E - 007 | 9.83371E-008 | 8.28391E-008 | 1.17705E-007 | 3.68158E - 009

2.36689E + 002 Hz 1.16140E + 002 Hz 1.05281E + 002 Hz 1.07945E + 002 Hz 1.40573E + 002 Hz

*****Odd-Order Elliptical Filter Synthesis*****

Passband edge (Hz) = 1.00000E + 002
Stopband edge (Hz) = 1.05000E + 002
Number of nulls (1-15) = 5

Critical Q = 144.56

Stopband rejection (dB) = 40.00

Passband Ripple (dB) = 0.000395

Nominal 3dB Cutoff (Hz) = 1.02487E + 002
Termination Impedance (Ohms) = 10000.00

** Low-Pass Filter **

Hz Farads Henries

6.86017E - 008
2.36689E + 002  2.65878E - 008 1.70060E + 001
1.55000E - 007
1.16140E + 002 1.71158E - 007 1.09718E + 001
9.83371E - 008
1.05281E + 002  3.54372E - 007 6.44888E + 000
8.28391E - 008
1.07945E + 002  3.05769E - 007 7.10954E + 000
1.17705E - 007
1.40573E + 002 1.41281E - 007 9.07304E + 000
3.68158E - 009
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Duality and Reciprocity. A network and its dual have identical response characteristics.
Each all-pole LC filter tabulated in Chapter 11 has an equivalent dual network. The circuit
configuration shown at the bottom of each table, and the bottom set of nomenclature, cor-
responds to the dual of the upper filter. For elliptic filters using Filter Solutions, a check-
mark in 1st Ele Shunt and 1st Ele Series will give you dual networks in the normalized
case of equal 1 ohm source and load terminations.

Any ladder-type network can be transformed into its dual by implementing the follow-
ing rules:

1. Convert every series branch into a shunt branch and every shunt branch into a series
branch.

2. Convert circuit branch elements in series to elements in parallel, and vice versa.

3. Transform each inductor into a capacitor, and vice versa. The values remain unchanged—
for instance, 4 H becomes 4 F.

4. Replace each resistance with a conductance—for example, 3 () becomes 3 mhos or ‘/3 Q.
5. Change a voltage source into a current source, and vice versa.

Figure 3-3 shows a network and its dual.

The theorem of reciprocity states that if a voltage located at one point of a linear network
produces a current at any other point, the same voltage acting at the second point results in
the same current at the first point. Alternatively, if a current source at one point of a linear net-
work results in a voltage measured at a different point, the same current source at the second
point produces the same voltage at the first point. As a result, the response of an LC filter is
the same regardless of which direction the signal flows in, except for a constant multiplier. It
is perfectly permissible to turn a filter schematic completely around with regard to its driving
source, provided that the source- and load-resistive terminations are also interchanged.

The laws of duality and reciprocity are used to manipulate a filter to satisfy termination
requirements or to force a desired configuration.

Designing for Unequal Terminations. Tables of all-pole filter LC element values are
provided in Chapter 11 for both equally terminated and unequally terminated networks. A
number of different ratios of source-to-load resistance are tabulated, including the imped-
ance extremes of infinity and zero.

To design an unequally terminated filter, first determine the desired ratio of R/R,.
Select a normalized filter from the table that satisfies this ratio. The reciprocity theorem can
be applied to turn a network around end for end and the source and load resistors can be

7H 2F 3F
4 H 2 H
7F
1 1
= a T a
18 5 6 H 4
I
" $ia Lag
3 . 10
5Q 40 39

FIGURE 3-3 An example of dual networks.
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interchanged. The tabulated impedance ratio is inverted if the dual network given by the
lower schematic is used. The chosen filter is then frequency- and impedance-scaled.

For unequally terminated elliptic filters, you can enter the required source and load ter-
minations in the Source Res and Load Res boxes of Filter Solutions before clicking the
Circuits button.

Example 3-4 Design of an LC Low-Pass Filter for Unequal Terminations
Required:
An LC low-pass filter

1 dB at 900 Hz
20-dB minimum at 2700 Hz

R, =1 kQ
R, = 5kQ
Result:

(a) Compute A,.

fs 2700 Hz
A=F T 900H, 3 @10

(b) Normalized requirement:
1 dB at X rad/s
20-dB minimum at 3X rad/s
(where X is arbitrary)

(c) Select a normalized low-pass filter that makes the transition from 1 dB to at least
20 dB over a frequency ratio of 3:1. A Butterworth n = 3 design satisfies these
requirements since Figure 2-34 indicates that the 1-dB point occurs at 0.8 rad/s and
that more than 20 dB of attenuation is obtained at 2.4 rad/s. Table 11-2 provides ele-
ment values for normalized Butterworth low-pass filters for a variety of impedance
ratios. Since the ratio of R/R, is 1:5, we will select a design for n = 3, corre-
sponding to R, = 0.2 ), and use the upper schematic. (Alternatively, we could
have selected the lower schematic corresponding to R, = 5 () and turned the net-
work end for end, but an additional inductor would have been required.)

d

~

The normalized filter from Table 11-2 is shown in Figure 3-4a. Since the 1-dB
point is required to be 900 Hz, the FSF is calculated by

desired reference frequency

FSF = ——
existing reference frequency
_ 2m900 rad/s _
© 0.8radls 7069 (2-D)

Using a Z of 5000 and an FSF of 7069, the denormalized component values are

R =RXZ=1kQ (2-8)
R, =5k
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02000 L,=0.2842 H 1kQ 0.201H

9 LYY\ 9-
.LC3 s
.- 79102 F S,
26687 F
(2)

®)

FIGURE 3-4 low-pass filter with unequal terminations: (a) normalized low-pass filter; (b) frequency- and

impedance-scaled filter.

. C 26687

€l T ESEx Z ~ 7069 x 5000 _ 007 BE (2-10)
C, = 0.22 uF

L, = LXZ_ 02842 %5000 _ 0 29

FSF 7069

The scaled filter is shown in Figure 3-4b.

If an infinite termination is required, a design having an R, of infinity is selected. When
the input is a current source, the configuration is used as given. For an infinite load imped-
ance, the entire network is turned end for end.

If the design requires a source impedance of 0 (), the dual network is used correspond-
ing to 1/R, of infinity or R, = 0 ().

In practice, impedance extremes of near zero or infinity are not always possible.
However, for an impedance ratio of 20 or more, the load can be considered infinite in com-
parison with the source, and the design for an infinite termination is used. Alternatively, the
source may be considered zero with respect to the load and the dual filter corresponding to
R, = 0 ) may be used. When n is odd, the configuration having the infinite termination
has one less inductor than its dual.

An alternate method of designing filters to operate between unequal terminations
involves partitioning the source or load resistor between the filter and the termination. For
example, a filter designed for a 1-k() source impedance could operate from a 250-{) source
if a 750-() resistor were placed within the filter network in series with the source. However,
this approach would result in a higher insertion loss.

Bartlett’s Bisection Theorem. A filter network designed to operate between equal ter-
minations can be modified for unequal source and load resistors if the circuit is symmetri-
cal. Bartlett’s bisection theorem states that if a symmetrical network is bisected and one
half is impedance-scaled, including the termination, the response shape will not change. All
tabulated odd-order Butterworth and Chebyshev filters having equal terminations satisfy
the symmetry requirement.

Example 3-5 Design of an LC Low-Pass Filter for Unequal Terminations using
Bartletts” Bisection Theorem

Required:

An LC low-pass filter

3 dB at 200 Hz

15-dB minimum at 400 Hz
R, = 1kO

R, = 1.5kQ
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Result:

(a) Compute A,.

f _ 400
A = 7200 © 2 (2-11)

(b) Figure 2-34 indicates that an n = 3 Butterworth low-pass filter provides 18-dB
rejection at 2 rad/s. Normalized LC values for Butterworth low-pass filters are
given in Table 11-2. The circuit corresponding to n = 3 and equal terminations is
shown in Figure 3-5a.

(c) Since the circuit of Figure 3-5a is symmetrical, it can be bisected into two equal
halves, as shown in Figure 3-5b. The requirement specifies a ratio of load-to-source
resistance of 1.5 (1.5k€/1k(), so we must impedance-scale the right half of the cir-
cuit by a factor of 1.5. The circuit of Figure 3-5¢ is thus obtained.

(d) The recombined filter of Figure 3-5d can now be frequency- and impedance-scaled
using an FSF of 27200 or 1256 and a Z of 1000.

R =1k
R, = 1.5kQ
C, = ¢ = ! = 0.796 wF (2-10)
' TFESFx Z 1256 x 1000 70 M
C, = 0.530 pF
., LXZ _25x%1000 _
L, = FSE — 1256~ 1.99 H (2-9)
The final filter is shown in Figure 3-5e.
1Q Lag =1H Lap=1H

10 Leg=1H Lzp=1SH 1@  L2=25H

FIGURE 3-5 An example of Bartlett’s bisection theorem: (a) normalized filter having equal terminations;
(b) bisected filter; (c) impedance-scaled right half section; (d) recombined filter; and (e) final scaled network.
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L

—_—cC R

- ¢
R_

FIGURE 3-6 Low-frequency equivalent circuits
of practical inductors and capacitors.

Effects of Dissipation. Filters designed using the tables of LC element values in Chapter 11
require lossless coils and capacitors to obtain the theoretical response predicted in Chapter 2.
In the practical world, capacitors are usually obtainable that have low losses, but inductors are
generally lossy, especially at low frequencies. Losses can be defined in terms of Q, the figure
of merit or quality factor of a reactive component.

If a lossy coil or capacitor is resonated in parallel with a lossless reactance, the ratio of
resonant frequency to 3-dB bandwidth of the resonant circuit’s impedance (in other words,
the band over which the magnitude of the impedance remains within 0.707 of the resonant
value) is given by

_f
Q - BW}dB (3_1)

Figure 3-6 gives the low-frequency equivalent circuits for practical inductors and capac-
itors. Their Qs can be calculated by

Inductors: 0= oL (3-2)
RL
Capacitor: 0 = wCR, (3-3)

where w is the frequency of interest, in radians per second.
Using elements having a finite Q in a design intended for lossless reactances has the fol-
lowing mostly undesirable effects:

* At the passband edge, the response shape becomes more rounded. Within the passband,
the ripples are diminished and may completely vanish.

* The insertion loss of the filter is increased. The loss in the stopband is maintained (except
in the vicinity of transmission zeros), so the relative attenuation between the passband
and the stopband is reduced.

Figure 3-7 shows some typical examples of these effects on all-pole and elliptic func-
tion low-pass filters.

The most critical problem caused by the finite element Q is the effect on the response
shape near cutoff. Estimating the extent of this effect is somewhat difficult without exten-
sive empirical data. The following variations in the filter design parameters will cause
increased rounding of the frequency response near cutoff for a fixed Q:

* Going to a larger passband ripple
¢ Increasing the filter order n
* Decreasing the transition region of elliptic-function filters

Changing these parameters in the opposite direction, of course, reduces the effects of
dissipation.
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0

FIGURE 3-7 The effects of finite Q.

Filters can be designed to have the responses predicted by modern network theory using
finite element Qs. Figure 3-8 shows the minimum Qs required at the cutoff for different
low-pass responses. If elements used are having Qs slightly above the minimum values
given in Figure 3-8, the desired response can be obtained provided that certain predistorted
element values are used. However, the insertion loss will be prohibitive. It is therefore
highly desirable that element Qs be several times higher than the values indicated.

The effect of low Q on the response near cutoff can usually be compensated for by going
to a higher-order network or a steeper filter and using a larger design bandwidth to allow
for rounding. However, this design approach does not always result in satisfactory results,
since the Q requirement may also increase. A method of compensating for low Q by using
amplitude equalization is discussed in Section 8.4.

30+
[ 1 dB Chebyshev
25+
r 0.5 dB Chebyshev
L
20
r 01 dB Chebyshev
ég 15!:
10 C Gaussian o 6 dB
S5 Butterworth
[ 0.5°
1 i 1 1 1 I 1 1 { !
° 2 3 ) 10

6
Filter order n
FIGURE 3-8 Minimum Q requirements for low-pass filters.
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1Q 1.5937 H 0159 Q 180 0159 Q

14328 F 14328 F 10 7Q 7 14Q

T @ - ()

FIGURE 3-9 Calculation of insertion loss: (@) third-order 0.1-dB Chebyshev low-pass filter with Q = 10;
(b) equivalent circuit at DC.

The insertion loss of low-pass filters can be computed by replacing the reactive ele-
ments with resistances corresponding to their Qs since at DC the inductors become short
circuits and capacitors become open, which leaves the resistive elements only.

Figure 3-9a shows a normalized third-order 0.1-dB Chebyshev low-pass filter where
each reactive element has a Q of 10 at the 1-rad/s cutoff. The series and shunt resistors for
the coil and capacitors are calculated using Equations (3-2) and (3-3), respectively. At
1 rad/s these equations can be simplified and reexpressed as

(3-4)

(3-5)

The equivalent circuit at DC is shown in Figure 3-9b. The insertion loss is 1.9 dB. The
actual loss calculated was 7.9 dB, but the 6-dB loss due to the source and load terminations
is normally not considered a part of the filter’s insertion loss since it would also occur in
the event that the filter was completely lossless.

Using Predistorted Designs. The effect of finite element Q on an LC filter transfer func-
tion is to increase the real components of the pole positions by an amount equal to the dis-
sipation factor d, where

d=— (3-6)

Figure 3-10 shows this effect. All poles are displaced to the left by an equal amount.

If the desired poles were first shifted to the right by an amount equal to d, the introduc-
tion of the appropriate losses into the corresponding LC filter would move the poles back
to the desired locations. This technique is called predistortion. Predistorted filters are
obtained by predistorting the required transfer function for a desired Q and then synthesiz-
ing an LC filter from the resulting transfer function. When the reactive elements of the fil-
ter have the required losses added, the response shape will correspond to the original
transfer function.

The maximum amount that a group of poles can be displaced to the right in the process
of predistortion is equal to the smallest real part among the poles given that further
movement corresponds to locating a pole in the right half plane, which is an unstable con-
dition. The minimum Q therefore is determined by the highest Q pole (in other words, the
pole having the smallest real component). The Qs shown in Figure 3-8 correspond to 1/d,
where d is the real component of the highest Q pole.

Tables are provided in Chapter 11 for all-pole predistorted low-pass filters. These
designs are all singly terminated with a source resistor of 1 () and an infinite termina-
tion. Their duals turned end for end can be used with a voltage source input and a 1-£)
termination.
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-iB
FIGURE 3-10 The effects of dissipation on the
pole pattern.

Two types of predistorted filters are tabulated for various ds. The uniform dissipation
networks require uniform losses in both the coils and the capacitors. The second type are
the Butterworth lossy-L filters, where only the inductors have losses, which closely agrees
with practical components. It is important for both types that the element Qs are closely
equal to 1/d at the cutoff frequency. In the case of the uniform dissipation networks, losses
must usually be added to the capacitors.

Example 3-6 Design of a Predistorted Lossy-L LC Low-Pass filter
Required:

An LC low-pass filter

3 dB at 500 Hz

24-dB minimum at 1200 Hz
R, = 600 Q)

R, = 100 kQ minimum
Inductor Qs of 5 at 500 Hz
Lossless capacitors

Result:

(a) Compute A,.

_ 1200 _
A = 500 24 (2-11)
(b) The curves of Figure 2-34 indicate that an n = 4 Butterworth low-pass filter has
over 24 dB of rejection at 2.4 rad/s. Table 11-14 contains the element values for
Butterworth lossy-L network where n = 4. The circuit corresponding to d = 0.2
(d = 1/Q) is shown in Figure 3-11a.
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;04518 H L3=2170H 600 O 542 Q 260 0
o Y —O
o L ..l
C, =1.098F

C4 =
‘[‘ 0.9289 F I
(a) (b)

FIGURE 3-11 The lossy-L low-pass filter of Example 3-6: (a) normalized filter; and () scaled filter.

(c) The normalized filter can now be frequency- and impedance-scaled using an FSF
of 277500 = 3142 and a Z of 600.

R, = 600 Q
, _ LXZ _ 04518 X 600 _
L = FSE 3142 86.3 mH (2-9)
Ly = 0414H
, C -~ 1.098 _
C T ESExZ 3142 x 600 OO82RE (2-10)
C, = 0493 nF
(d) The resistive coil losses are
R, = %L =542 0 (3-2)
and Ry = 2600
where w = 27f, = 3142

The final filter is given in Figure 3-11b.

Example 3-7 Design of a Uniform Distortion LC Low-Pass filter

Required:

An LC low-pass filter

3 dB at 100 Hz

58-dB minimum at 300 Hz
R, = 1kQ

R, = 100 k) minimum
Inductor Qs of 11 at 100 Hz

Lossless capacitors

Result:

(a) Compute A,.
_ 300 _

A= 100

3 (2-11)
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L,=18416 H Lg=16839H
LYY\ ® e e at

i o s

Ci=11449 F C3=20209F Cg=09123 F

It

()

2932H 1620 2681H 148 Q

1kQ

1k 148 & 2681H 162 0 2932 H

FIGURE 3-12  The design of the uniform dissipation network from Example 3-7: (a) normalized fifth-order
0.1-dB Chebyshev with d = 0.0881; (b) frequency- and impedance-scaled filter including losses; and
(c) final network.

(b) Figure 2-42 indicates that a fifth-order 0.1-dB Chebyshev has about 60 dB of rejec-
tion at 3 rad/s. Table 11-32 provides LC element values for 0.1-dB Chebyshev uni-
form dissipation networks. The available inductor Q of 11 corresponds to a d of
0.091 (d = 1/Q). Values are tabulated for an n = 5 network having a d of 0.0881,
which is sufficiently close to the requirement. The corresponding circuit is shown
in Figure 3-12a.

(c) The normalized filter is frequency-and impedance-scaled using an FSF of
2100 = 628 and a Z of 1000.

¢ = FSFCX z~ 6281 ';44;?)00 = 183 uF @-10)

C, = 3216 uF

C, = 1453 pF
L = LF>S<FZ _ 1.841662>£<g 1000 _ 5 930 g 29)

L, = 2681 H

(d) The shunt resistive losses for capacitors C}, C%, and C; are

R, = wgc = 9.91kQ (3-3)

Ry = 5.62kQ

R; = 12.44kQ
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The series resistive inductor losses are
wL

R, = E =162 Q (3-2)
R, =148Q
_1_ 1 _
where 0= 4 00881 11.35
and w = 2mf, = 27100 = 628

The resulting circuit, including all losses, is shown in Figure 3-12b. This circuit can be
turned end for end so that the requirement for a 1-k{) source resistance is met. The final
filter is given in Figure 3-12c.

It is important to remember that uniform dissipation networks require the presence of
losses in both the coils and capacitors, thus resistors must usually be added. Component Qs
within 20 percent of 1/d are usually sufficient for satisfactory results.

Resistors can sometimes be combined to eliminate components. In the circuit of
Figure 3-12c¢, the 1-k() source and the 12.44-k() resistor can be combined, which results
in a 926-() equivalent source resistance. The network can then be impedance scaled to
restore a 1-k{} source.

3.2 ACTIVE LOW-PASS FILTERS

Active low-pass filters are designed using a sequence of operations similar to the design of
LC filters. The specified low-pass requirement is first normalized and a particular filter type
of the required complexity is selected using the response characteristics given in Chapter 2.
Normalized tables of active filter component values are provided in Chapter 11 for each
associated transfer function. The corresponding filter is denormalized by frequency and
impedance scaling.

Active filters can also be designed directly from the poles and zeros. This approach
sometimes offers some additional degrees of freedom and will also be covered.

All-Pole Filters

The transfer function of a passive RC network has poles that lie only on the negative real
axis of the complex frequency plane. In order to obtain the complex poles required by the
all-pole transfer functions of Chapter 2, active elements must be introduced. Integrated cir-
cuit operational amplifiers are readily available that have nearly ideal properties, such as
high gain. However, these properties are limited to frequencies below a few MHz, so active
filters beyond this range are difficult.

Unity-Gain Single-Feedback Realization. Figure 3-13 shows two active low-pass filter
configurations. The two-pole section provides a pair of complex conjugate poles, whereas
the three-pole section produces a pair of complex conjugate poles and a single real-axis pole.
The operational amplifier is configured in the voltage-follower configuration, which has a
closed-loop gain of unity, very high-input impedance, and nearly zero output impedance.

The two-pole section has the transfer function

1
C,Cys* + 2C,s + 1

T(s) = (3-7
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FIGURE 3-13 Unity-gain active low-pass configurations: (a) two-pole section; and (b) three-pole section.
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A second-order low-pass transfer function can be expressed in terms of the pole loca-
tions as

1

= 1 s2 + 2a s+ 1 4
012 + BZ a2 + '82
Equating coefficients and solving for the capacitors results in
_ 1
C =4 (3-9)
a
C, = m (3-10)

where a and 3 are the real and imaginary coordinates of the pole pair.
The transfer function of the normalized three-pole section was discussed in Section 1.2
and given by

1

) = $A + $’B + sC + 1 {-17)

where A = C GG (1-18)
B =2Cy(C, + C) (1-19)

and C=0C,+ 3G (1-20)

The solution of these equations to find the values of C,, C,, and C; in terms of the poles
is somewhat laborious and is best accomplished with a digital computer.

If the filter order n is an even order, n/2 two-pole filter sections are required. Where n
is odd, (n — 3)/2, two-pole sections and a single three-pole section are necessary. This
occurs because even-order filters have complex poles only, whereas an odd-order transfer
function has a single real pole in addition to the complex poles.

At DC, the capacitors become open circuits; so the circuit gain becomes equal to that of
the amplifier, which is unity. This can also be determined analytically from the transfer
functions given by Equations (3-7) and (1-17). At DC, s = 0 and 7(s) reduces to 1. Within
the passband of a low-pass filter, the response of individual sections may have sharp peaks
and some corresponding gain.

All resistors are 1 ) in the two normalized filter circuits of Figure 3-13. Capacitors C,,
C,, and C; are tabulated in Chapter 11. These values result in the normalized all-pole trans-
fer functions of Chapter 2 where the 3-dB cutoff occurs at 1 rad/s.
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To design a low-pass filter, a filter type is first selected from Chapter 2. The corre-
sponding active low-pass filter values are then obtained from chapter 11. The normalized
filter is denormalized by dividing all the capacitor values by FSF X Z, which is identical
to the denormalization formula for LC filters, as shown in the following

c

C=ESFxz

(2-10)
where FSF is the frequency-scaling factor 27f. and Z is the impedance-scaling factor.
The resistors are multiplied by Z, which results in equal resistors throughout, having a
value of Z Q).

The factor Z does not have to be the same for each filter section, since the individual cir-
cuits are isolated by the operational amplifiers. The value of Z can be independently cho-
sen for each section so that practical capacitor values occur, but the FSF must be the same
for all sections. The sequence of the sections can be rearranged if desired.

The frequency response obtained from active filters is usually very close to theoretical
predictions, provided that the component tolerances are small and that the amplifier has sat-
isfactory properties. The effects of low Q, which occurs in LC filters, do not apply, so the
filters have no insertion loss and the passband ripples are well-defined.

Example 3-8 Design of an Active All-pole Low-Pass filter
Required:

An active low-pass filter
3 dB at 100 Hz
70-dB minimum at 350 Hz

Result:
(a) Compute the low-pass steepness factor A,.

fi _ 350
A = ft =100 = 35 (2-11)
(b) The response curve of Figure 2-44 indicates that a fifth-order 0.5-dB Chebyshev
low-pass filter meets the 70-dB requirement at 3.5 rad/s.
(¢) The normalized values can be found in Table 11-39. The circuit consists of a three-
pole section followed by a two-pole section and is shown in Figure 3-14a.

(d) Let us arbitrarily select an impedance-scaling factor of 5 X 10*. Using an FSF of
27, or 628, the resulting new values are

Three-pole section:

. Cc 6.842 _ _
C, = FSEX Z ~ 628 X 5 X 10° 0.218 wF (2-10)
C, = 0.106 p.F
C, = 0.00966 uF
Two-pole section:
;o C _ 9.462 _
COTRSExZ 68 xsxio O0IkE

C, = 0.00364pF
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o- L

Cp=3317F Z=C3:03033F

(a)

50 kQ 50 kQ

000966 uF

(b)

1
100 350

©

FIGURE 3-14 The low-pass filter of Example 3-8: (a) normalized fifth-order 0.5-dB Chebyshev
low-pass filter; (b) denormalized filter; and (c) frequency response.

The resistors in both sections are multiplied by Z, resulting in equal resistors through-
out of 50-k(). The denormalized circuit is given in Figure 3-14b, and having the fre-
quency response of Figure 3-14c.

The first section of the filter should be driven by a voltage source having a source
impedance much less than the first resistor of the section. The input must have a DC return
to ground if a blocking capacitor is present. Since the filter’s output impedance is low, the
frequency response is independent of the terminating load, provided that the operational
amplifier has sufficient driving capability.

Real-Pole Configurations. All odd-order low-pass transfer functions have a single
real-axis pole. This pole is realized as part of the n = 3 section of Figure 3-135 when the
tables of active all-pole low-pass values in Chapter 11 are used. If an odd-order filter is
designed directly from the tabulated poles, the normalized real-axis pole can be generated
using one of the configurations given in Figure 3-15.
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(A-1)R Ciq

|-

In O— A\ \\—¢

—O Out

FIGURE 3-15 The first-order pole configurations: (a) a basic RC section; (b) a noninverting gain config-
uration; and (c) an inverting gain circuit.

The most basic form of a real pole is the circuit of Figure 3-15a. The capacitor C is
defined by
1
C = a (3-11)
where ¢, is the normalized real-axis pole. The circuit gain is unity with a high-impedance
termination.

If gain is desirable, the circuit of Figure 3-15a can be followed by a noninverting ampli-
fier, as shown in Figure 3-15b, where A is the required gain. When the gain must be invert-
ing, the circuit of Figure 3-15¢ is used.

The chosen circuit is frequency- and impedance-scaled in a manner similar to the rest
of the filter. The value R in Figure 3-15b is arbitrary since only the ratio of the two feed-
back resistors determines the gain of the amplifier.

Example 3-9 Design of an Active All-pole Low-Pass filter with a Separate Real-
Pole section

Required:

An active low-pass filter
3dB at75 Hz

15-dB minimum at 150 Hz
A gain of 40 dB (A = 100)

Result:

(a) Compute the steepness factor.

fi _ 150
AS—E—%—Z (2-11)
(b) Figure 2-34 indicates that an n = 2 Butterworth low-pass response satisfies the
attenuation requirement. Since a gain of 100 is required, we will use the n = 2 sec-
tion of Figure 3-13a, followed by the n = 1 section of Figure 3-15b, which pro-

vides the gain. The circuit configuration is shown in Figure 3-16a.

(c) The following pole locations of a normalized n = 3 Butterworth low-pass filter are
obtained from Table 11-1:

Complex pole « = 0.5000 B = 0.8660
Real pole a, = 1.0000
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FIGURE 3-16 The low-pass filter of Example 3-9: (a) circuit configuration;
(b) normalized circuit; and (¢) scaled filter.

00212 uf

The component values for the n = 2 section are

1 1
CIZEZQZZF (3-9)
o 0.5
C, = = =0S5F 3-10
2 o+ B2 052+ 0.8662 (3-10)

The capacitor in the n = 1 circuit is computed by
L _ 1 _
C= = 1.0 1F (3-11)

Since A = 100, the feedback resistor is 99R in the normalized circuit shown in Figure
3-16b.
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(d) Using an FSF of 27f, or 471 and selecting an impedance-scaling factor of 10, the
denormalized capacitor values are

n = 2 section:
FSF X Z 471 X 10°

) = 0.0425 uF (2-10)

C, = 0.0106 uF
n = 1 section:
C' = 0.0212 uF

The value R for the n = 1 section is arbitrarily selected at 10 k(). The final circuit is
given in Figure 3-16c¢.

Although these real-pole sections are intended to be part of odd-order low-pass filters,
they can be independently used as an n = 1 low-pass filter, and have the transfer function

1

Ts) = Kie7

(3-12)

where K = 1 for Figure 3-15a, K = A for Figure 3-15b, and K = —A for Figure 3-15c¢. If
C = 1F, the 3-dB cutoff occurs at 1 rad/s.
The attenuation of a first-order filter can be expressed as

w. \2
Ap = 1010g|:1 + <w> } (3-13)

where w,/w, is the ratio of a given frequency to the cutoff frequency. The normalized fre-
quency response corresponds to the n = 1 curve of the Butterworth low-pass filter
response curves of Figure 2-34. The step response has no overshoot and the impulse
response does not have any oscillatory behavior.

Example 3-10 Design of an Active All-pole Low-Pass filter with a Gain of 10 dB
Required:

An active low-pass filter

3 dB at 60 Hz

12-dB minimum attenuation at 250 Hz
A gain of 20 dB with inversion

Result:

(a) Compute A,.

fo 250
A, = =60 = 4.17 (2-11)

(b) Figure 2-34 indicates that an n = 1 filter provides over 12 dB attenuation at 4.17
rad/s. Since an inverting gain of 20 dB is required, the configuration of Figure 3-15¢

will be used. The normalized circuit is shown in Figure 3-17a, where C = 1 F and
A = 10, corresponding to a gain of 20 dB.
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\F 0.00265 uF

1Q 1 Meg

——AAA— " V\W\—4
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FIGURE 3-17 The n = 1 low-pass filter of Example 3-10: (a) normalized filter; and
(b) frequency- and impedance-scaled filter.

(¢) Using an FSF of 27760 or 377 and an impedance-scaling factor of 108, the denor-
malized capacitor is

C 1

C =ESEXZ~ 377 x 106

= 0.00265 wF (2-10)

The input and output feedback resistors are 100 k() and 1 M(), respectively. The final
circuit is shown in Figure 3-17b.

Second-Order Section with Gain.  If an active low-pass filter is required to have a gain
higher than unity and the order is even, the n = 1 sections of Figure 3-15 cannot be used
since a real pole is not contained in the transfer function.

The circuit of Figure 3-18 realizes a pair of complex poles and provides a gain of —A.
The element values are computed using the following formulas:

BZ
C,=(@A+ 1)(1 + M) (3-14)
p— a -
Ri= @ i B (3-15)
AR,
Ry= 40 (3-16)
R, = AR, (3-17)

This section is used in conjunction with the n = 2 section of Figure 3-13a to realize
even-order low-pass filters with gain. This is shown in the following example:

FIGURE 3-18 Second-order section with gain.
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Example 3-11 Design of an Active All-pole Low-Pass filter with a Gain of 2
Required:

An active low-pass filter

3 dB at 200 Hz

30-dB minimum at 800 Hz

No step-response overshoot

A gain of 6 dB with inversion (A = 2)

Result:

(a) Compute A,.

_Je 800 _
A‘Y—E—m—4 (2-11)

(b) Since no overshoot is permitted, a Bessel filter type will be used. Figure 2-56 indi-
cates that a fourth-order network provides over 30 dB of rejection at 4 rad/s. Since
an inverting gain of 2 is required and n = 4, the circuit of Figure 3-18 will be used,
followed by the two-pole section of Figure 3-13a. The basic circuit configuration
is given in Figure 3-19a.

(c) The following pole locations of a normalized n = 4 Bessel low-pass filter are
obtained from Table 11-41:

a = 1359 f = 04071
and a=09877 B = 12476

The normalized component values for the first section are determined by the fol-
lowing formulas, where a = 1.3596, 8 = 0.4071,and A = 2:

2 2
C,=A+ 1)(1 + Bz> = 3(1 + (1)"3‘2;;) =327F (3-14)
[0 .
a 1.3596
R, = = =0. Q -1
UOA@? + BY 2(1.35962 + 0.40712) 0.3375 (3-15)
AR, 2 X 0.3375
Ry= i1~ 3 =0.2250Q (3-16)
R, = AR, = 2 X 0.3375 = 0.675 Q (3-17)

The remaining pole pair of & = 0.9877 and 8 = 1.2476 is used to compute the
component values of the second section.

—_

C = = 1.012F (3-9)

1
o~ 0.9877

@ 0.9877
C, = = =039F 3-10
2 a?+ B 09877 + 1.2476 (3-10)

The normalized low-pass filter is shown in Figure 3-19b.

(d) Using an FSF of 27rf, or 1256 and an impedance-scaling factor of 10* for both sec-
tions, the denormalized values are
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0675 Q

1012 F
19 19
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(®)

6750 Q

0.0796 uF

FIGURE 3-19 The n = 4 Bessel low-pass filter of Example 3-11: (a) circuit configuration;
(b) normalized filter; and (c) frequency- and impedance-scaled filter.

n = 2 section with A = 2:

R, =R X Z= 03375 X 10* = 3375 Q (2-8)
R, = 2250 Q)
R, = 6750 Q

C, C __ 32T _ (260 puF (2-10)

TFSFXZ 1256 X 10°
C, = 0.0796 pF
n = 2 section having unity gain:
R = 10kQ

__C _ 1012
FSF X Z ~ 1256 X 10°

C, = 0.0310 uF

C, = 0.0806 p.F (2-10)

The final circuit is shown in Figure 3-19c¢.
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FIGURE 3-20 An all-pole configuration.

VCVS Uniform Capacitor Structure. The unity-gain n = 2 all-pole configuration of
Figure 3-13a requires unequal capacitor values and noninteger capacitor ratios. The inconve-
nience usually results in either the use of nonstandard capacitor values or the paralleling of
two or more standard values.

An alternate configuration is given in this section. This structure features equal capaci-
tors. However, the circuit sensitivities are somewhat higher than the previously discussed
configuration. Nevertheless, the more convenient capacitor values may justify its use in
many instances where higher sensitivities are tolerable.

The n = 2 low-pass circuit of Figure 3-20 features equal capacitors and a gain of 2. The
element values are computed as follows:

Select C.
_ 1 .
Then R, = 20 C (3-18)
2a’
and (3-19)

Ry=—F——
2 C( arz + Brz)
where ' and B’ are the denormalized real and imaginary pole coordinates. R may be con-
veniently chosen.
Example 3-12 Design of an Active All-pole Low-Pass filter Using Uniform Capacitor
Values

Required:
Design a fourth-order 0.1-dB Chebysheyv active low-pass filter for a 3-dB cutoff of 100 Hz
using 0.01 wF capacitors throughout.

Result:

(a) The pole locations for a normalized 0.1-dB Chebyshev low-pass filter are obtained
from Table 11-23 and are as follows:

a = 02177 B = 0.9254
and a = 05257 B = 0.3833

(b) Two sections of the filter of Figure 3-20 will be cascaded. The value of C is 0.01
wF, and R is chosen at 10 k().

Section 1:

a=02177 o = a X FSF = 136.8
B =09254 B = x FSF = 581.4

where FSF 27f, = 628.3
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001 uF
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1 10 kQ 10 kQ
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150 k1 | 392 kQ
365 kQ | 76.8 kQ
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I 0.01 uF I
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FIGURE 3-21 The equal capacitor circuit of Example 3-12.

S S -
Ry =5 = 365.5kQ (3-18)

2a’

R2 = m = 76.7kQ (3—19)

Section 2:

a = 05257 o = 3300
B =03833 B =240.8

R, = 151.4kQ (3-18)
R, = 395.4kQ (3-19)

The final filter is shown in Figure 3-21. The gain is 22 or 4.

The Low-Sensitivity Second-Order Section. The low-pass filter section of Figure 3-22
realizes a second-order transfer function which can be expressed as

1

TG) = ——
() T Tos? + To5 + 1

(3-20)

where 7, = R,C, and 7, = R,C,.

Ry Rz O E o9
E i O==AAA~=d

C.

llH

FIGURE 3-22 The low-sensitivity second-order section.
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If we first equate Equation (3-20) with Equation (3-7), the general form for a second-
order transfer function, and then solve for R, and R,, we obtain
_1
2aC,

R, = 2270(2
(o + BHC,
Two important observations can be made from Figure 3-22 and the associated design
equations. Since both operational amplifiers are configured as voltage followers, the circuit
sensitivity to amplifier open-loop gain is not as severe as for the previous circuit which
requires a gain of 2. Secondly, both the transfer function and design equations clearly indi-
cate that the circuit operation is dictated by two time constants: R,C, and R,C,. Thus, C,
and C, can be independently selected for convenient values or made equal, as desired.
Example 3-13 illustrates the application of this configuration.

R, = (3-21)

and (3-22)

Example 3-13 Design of an Active All-pole Low-Pass filter Using Low-sensitivity
Second-Order Sections

Required:
Design a fourth-order 0.1-dB Chebyshev low-pass filter for a 3-dB cutoff frequency of
10 kHz using the low-sensitivity second-order section.

Result:

(a) The pole locations for a normalized 0.1-dB Chebyshev low-pass filter (given in
Table 11-23) are as follows:

a = 02177 B = 0.9254
and a = 0.5257 B =0.3833
(b) Denormalizing the pole locations (multiply « and B by the FSF):
o = 13,678 P’ = 58,145
and o' =33,031 B’ = 24,083

(c) Compute the component values as follows:

Section 1:
o = 13,678 B’ = 58,145
Let C, = C, = 0.001 uF
-1 _ .
R, = 2 C 36.56 k() (3-21)
2a’
R, =—F"—>— =7.667k) 3-22
2 (arz + ﬁrz)cz ( )
Section 2:

o' = 33,031 B’ = 24,083
15.14 kQ (3-21)

R, = 39.53 k() (3-22)
The resulting circuit is shown in Figure 3-23. The overall gain is unity.

R,
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FIGURE 3-23 The circuit of Example 3-13.

Elliptic-Function VCVS Filters. Elliptic-function filters were first discussed in section
2.9. They contain zeros as well as poles. The zeros begin just outside the passband and force
the response to decrease rapidly as (), is approached. (Refer to Figure 2-82 for frequency-
response definitions.)

Because of these finite zeros, the active filter circuit configurations of the previous sec-
tion cannot be used since they are restrained to the realization of poles only.

The schematic of an elliptic-function low-pass filter section is shown in Figure 3-24a.
This section provides a pair of complex conjugate poles and a pair of imaginary zeros, as
shown in Figure 3-24b. The complex pole pair has a real component of & and an imaginary
coordinate of . The zeros are located at = jw,,. The RC section consisting of Ry and Cj
introduces a real pole at «,.

The configuration contains a voltage-controlled voltage source (VCVS) as the active
element and is frequently referred to as a VCVS realization. Although this structure
requires additional elements when compared with other VCVS configurations, it has been
found to yield more reliable results and has lower sensitivity factors.

The normalized element values are determined by the following relations:

First calculate

a=—22 -1 (3-23)

Va'? + B _é

b=—s=— (3-24)

c=Va?+ p?= , (3-25)

where o', B, and w',, are the denormalized pole-zero coordinates. The second forms of
Equations (3-23) through (3-25) involving Q and w, are used when these parameters are
directly provided already denormalized by the Filter Solutions program.

A controlled amplification of K is required between the noninverting amplifier input
and the section output. Since the gain of a noninverting operational amplifier is the ratio of
the feedback resistors plus 1, R, and R, are R and (K — 1) R, respectively, where R can be
any convenient value.

In the event that K is less than 1, the amplifier is reconfigured as a voltage follower and
R, is split into resistors R,, and R, where

R, = ( — KR, (3-26)
R,, = KR, (3-27)

The modified circuit is shown in Figure 3-25.
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FIGURE 3-24 The elliptic-function low-pass filter section: (@) VCVS circuit configuration for K > 1; and
(b) pole-zero pattern.

The design of active elliptic-function filters utilizes the Filter Solutions program pro-
vided on the CD-ROM for obtaining pole-zero locations which are already denormalized.
The design method proceeds as if a passive elliptic low-pass filter is being designed.
However, once a design is completed, the Transfer Function button is depressed and then

only
FIGURE 3-25 The elliptic-function VCVS low-pass filter section for K < 1.
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the Casc box is checked. The poles and zeros are displayed in cascaded form (rather than rec-
tangular form), which must now be utilized to compute a, b, and ¢ of Equations (3-23), (3-24),
and (3-25), as follows:

_ 2 _ 1 -
Vs 0 (3-23)
(1)’2 (,()2
b=t =2 (3-24)

c=Va?+ p?%= w, (3-25)

For odd-order filters, the real pole «, is presented as (S + «,) in the denominator.
The element values are computed as follows:

Select C
Then c,=¢C (3-28)
G
C=C = 35 (3-29)
G -1
let C, = 1 (3-30)
Ry = 1 (3-31)

cCl\/l;

R, =R, = 2R, (3-32)

4Vb

Ri=ca =) + 4, (3-33)

26, 4 2 ( 1 >
K=2+—+—— + — — aC (3-34)

G oVh o Vb\Re
Section gain = oot 3-35
ection gain = iC, T C, (3-35)
Capacitor Cs is determined from the denormalized real pole by
1

Cs = (3-36)

’
Rsa

where both R and Ry can be arbitrarily chosen and « is o, X FSF.

Odd-order elliptic-function filters are more efficient than even-order since maximum
utilization is made of the number of component elements used. Since the circuit of Figure
3-24 provides a single pole pair (along with a pair of zeros), the total number of sections
required for an odd-order filter is determined by (n — 1)/2, where n is the order of the fil-
ter. Because an odd-order transfer function has a single real pole, R5 and Cs appear on the
output section only.

In the absence of a detailed analysis, it is a good rule of thumb to pair poles with their
nearest zeros when allocating poles and zeros to each active section. This applies to high-
pass, bandpass, and band-reject filters as well.
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Example 3-14 Design of an Active Elliptic Function Low-Pass Filter using the VCVS
Structure

Required:

Design an active elliptic-function low-pass filter corresponding to a 0.177-dB ripple, a
cutoff of 100 Hz and a minimum attenuation of 37 dB at 292.4 Hz using the VCVS
structure of Figure 3-24.

Result:

(a) Open Filter Solutions.

Check the Stop Band Freq box.

Enter .177 in the Pass Band Ripple (dB) box.
Enter 100 in the Pass Band Freq box.

Enter 292.4 in the Stop Band Freq box.
Check the Frequency Scale Hertz box.

(b) Click the Set Order control button to open the second panel.

Enter 37 for Stop band Attenuation (dB).
Click the Set Minimum Order button and then click Close.
3 Order is displayed on the main control panel.

(¢) Click the Transfer Function button.
Check the Casc box.

The following is displayed:

Continuous Transfer Function

Wn = 2105

71.83 (S” + 4.432e+06)

(S® + 485.5*S + 5.713e+05) (S + 557.4)

Wo =755.8
Q=1.557

3rd Order Low Pass Elliptic

Pass Band Frequency = 100.0 Hz  Stop Band Ratio = 2.924
Pass Band Ripple = 177.0 mdB Stop Band Frequency = 292.4 Hz
Stop Band Attenuation = 37.43 dB

(d) The design parameters are summarized as follows:
Section Q = 1.557
Section w, = 755.8
Section w,, = 2105

oy = 557.4 (from the denominator)
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(e) The element values are computed as follows:

a = 0.6423 (3-23)
b = 7.7569 (3-24)
c=7558 (3-25)
Select C,=C=0.1pF (3-28)
C, = C, = 0.05 pF (3-29)
C, = 0.169 uF (3-30)

Let C, = 0.22 pF
R, = 4751 Q (3-31)
R, = R, = 9502 Q (3-32)
R, = 72.2kQ (3-33)
K = 5.402 (3-34)
Let R =R, = 10kQ (3-35)
then Cs = 0.180 uF (3-36)

The resulting circuit is shown in Figure 3-26 using standard values.

State-Variable Low-Pass Filters. The poles and zeros of the previously discussed active
filter configurations cannot be easily adjusted because of the interaction of circuit elements.
For most industrial requirements, sufficient accuracy is obtained by specifying 1-percent
resistors and 1- or 2-percent capacitors. In the event that greater precision is required, the
state-variable approach features independent adjustment of the pole and zero coordinates.
Also, the state-variable configuration has a lower sensitivity to many of the inadequacies
of operational amplifiers such as finite bandwidth and gain.

0.1 uF
1

44.2 k)

9530 0 | 953040 ‘0"“
— A \ C £
out
Ein O— / l
e 11 :
1, {| I

0.05 wF 0.05 uF
4750 O 0.22 uF —-[

73.2 ky

FIGURE 3-26 The circuit for the active elliptic-function low-pass filter.
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Ry
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In O—AANA—4 Ra c R
R
° i !
Bandpass = Low-pass
output o output

FIGURE 3-27 The state-variable all-pole low-pass configuration.

All-Pole Configuration. The circuit of Figure 3-27 realizes a single pair of complex
poles. The low-pass transfer function is given by

1 1
R2R4C2 2 + L + 1
Y TRCT T RRC

T(s) = (3-37)

If we equate Equation (3-37) to the second-order low-pass transfer function expressed
by Equation (3-8) and solve for the element values, after some algebraic manipulation we
obtain the following design equations:

R =5 (3-38)

R,=R,=R, = (3-39)

[N

CVa? + B
where o and 3 are the real and imaginary components, respectively, of the pole locations
and C is arbitrary. The value of R in Figure 3-27 is also optional.

The element values computed by Equations (3-38) and (3-39) result in a DC gain of
unity. If a gain of —A is desired, R, can instead be defined by

Ro=— A (3-40)

ACVa® + pB?

Sometimes it is desirable to design a filter directly at its cutoff frequency instead of cal-
culating the normalized values and then frequency- and impedance-scaling the normalized
network. Equations (3-38) and (3-39) result in the denormalized values if @ and B are first
denormalized by the frequency-scaling factor FSF as follows:

o' = a X FSF (3-41)
B =B X FSF (3-42)

Direct design of the denormalized filter is especially advantageous when the design for-
mulas permit the arbitrary selection of capacitors and all network capacitors are equal. A
standard capacitance value can then be chosen.

Figure 3-27 indicates that a bandpass output is also provided. Although a discussion of
bandpass filters will be deferred until Chapter 5, this output is useful for tuning of the
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low-pass filter. To adjust the low-pass real and imaginary pole coordinates, first compute
the bandpass resonant frequency:

(@) + B

fo= (3-43)

Trim the value of R, until resonant conditions occur at the bandpass output with f;
applied. Resonance can be determined by exactly 180° of phase shift between input and
output or by peak output amplitude. The 180° phase shift method normally results in more
accuracy and resolution. By connecting the vertical channel of an oscilloscope to the sec-
tion input and the horizontal channel to the bandpass output, a Lissajous pattern is
obtained. This pattern is an ellipse that will collapse to a straight line (at a 135° angle) when
the phase shift is 180°.

For the final adjustment, trim R, for a bandpass Q (for example, f,/3-dB bandwidth)
equal to

o= (3-44)
(64

Resistor R, can be adjusted for a measured bandpass output gain at f;, equal to the com-
puted ratio of R,/R,. Amplifier phase shift creates a Q-enhancement effect where the Q of
the section is increased. This effect also increases the gain at the bandpass output, so
adjustment of R, for the calculated gain will usually restore the desired Q. Alternatively,
the 3-dB bandwidth can be measured and the Q computed. Although the Q measurement
approach is the more accurate method, it certainly is slower than a simple gain adjustment.

Example 3-15 Design of an Active State-Variable All-Pole Low-Pass Filter

Required:

An active low-pass filter
3dB = 0.25 dB at 500 Hz
40-dB minimum at 1375 Hz

Result:

(a) Compute A,.

1375
A =22 =275 2-11)

(b) Figure 2-42 indicates that a fourth-order 0.1-dB Chebyshev low-pass filter has over
40 dB of rejection at 2.75 rad/s. Since a precise cutoff is required, we will use the
state-variable approach so the filter parameters can be adjusted if necessary.

The pole locations for a normalized fourth-order 0.1-dB Chebyshev low-pass
filter are obtained from Table 11-23 and are as follows:

a = 02183 B = 0.9262
and a = 05271 B = 0.3836

(c) Two sections of the circuit of Figure 3-27 will be cascaded. The denormalized
filter will be designed directly. The capacitor value C is chosen to be 0.01 wF, and
R is arbitrarily selected to be 10 k().
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Section 1:
a =02183 o = a X FSF = 685.5 (3-41)
B =09262 B =B X FSF = 2908 (3-42)

where FSF = 27f, = 27500 = 3140
1

Ry = 5o = 729410 (3-38)
R=R =R, =— - =3347kQ (3-39)
CV (@) + (B
Section 2:
@=05271 o =ax FSF = 1655 (3-41)
B =03836 B =B X FSF = 1205 (3-42)
where FSF = 3140
Ry = 5o = 3021 kO (3-38)
Ry=R =R =— 1 —4885kQ (3-39)
\ CV(a')? + (B')

(d) The resulting filter is shown in Figure 3-28. The resistor values have been modi-
fied so that standard 1-percent resistors are used and adjustment capability is pro-
vided.

The bandpass resonant frequency and Q are

Section 1:
V(') + (B')
fo=——5— = 4I6Hz (3-43)
y
Q= ],CO = 2.18 (3-44)
«
Section 2:
Jo = 326 Hz (3-43)
Q0 = 0.619 (3-44)

Elliptic-Function Configuration. When precise control of the parameters of elliptic-
function filters is required, a state-variable elliptic-function approach is necessary. This is
especially true in the case of very sharp filters where the location of the poles and zeros is
highly critical.

The circuit in Figure 3-29 has the transfer function

(3-45)
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309 k1 i |

5 k@

R =10 kQ
R =10 kQ

46.4 kQ i |

R, 5kQ
——A——— —_—
28 k0 i l Rs
5kQ
C=001 uF
RQ =
487 kQ

R =40 k)
R=10 kQ

———————0 Qut
FIGURE 3-28 The state-variable low-pass filter of Example 3-15.

where R, = R, and R, = R,. The numerator roots result in a pair of imaginary zeros, and
the denominator roots determine a pair of complex poles. Since both the numerator and
denominator are second-order, this transfer function form is frequently referred to as biqua-
dratic, while the circuit is called a biguad. The zeros are restricted to frequencies beyond the
pole locations—for example, the stopband of elliptic-function low-pass filters. If R in
Figure 3-29 were connected to node 2 instead of node 1, the zeros would occur below the
poles as in high-pass elliptic-function filters.

The design of active elliptic-function filters using biquads utilizes the Filter
Solutions program provided on the CD-ROM for obtaining pole-zero locations, which
are already denormalized. The design method proceeds as if a passive elliptic low-pass
filter is being designed. However once a design is completed the Transfer Function
button is depressed and then the Casc box is checked. The poles and zeros are displayed
in cascaded form (rather than rectangular form), which can then be used in the design
equations.

The parameters obtained from Filter Solutions are .., »,, Q, and o, which are already
denormalized.
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FIGURE 3-29 The state-variable (biquad) configuration for elliptic-function low-pass filters.

First, compute:

@y
a = 20 (3-46)
The component values are

1

R, =R, = %aC (3-47)
1

R, =Ry = 0,C (3-48)
2awyR

= 3-49

P (@)~ (@) (49

w, \2
Rs =\ 1w, | AR (3-50)

where C and R are arbitrary and A is the desired low-pass gain at DC.
Since odd-order elliptic-function filters contain a real pole, the last section of a cascade
of biquads should contain capacitor C4 in parallel with R,. To compute Cg

1
aRg

The poles and zeros of the biquad configuration of Figure 3-29 can be adjusted by
implementing the following sequence of steps:

Cy (3-51)

1. Resonant frequency: The bandpass resonant frequency is defined by
D

h=5" (3-52)
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If R, is made adjustable, the section’s resonant frequency can be tuned to £, by mon-
itoring the bandpass output at node 3. The 180° phase shift method is preferred for the
determination of resonance.

2. Q adjustment: The bandpass Q is given by

0=~ (3-53)

Adjustment of R, for unity gain at fj measured between the section input and the
bandpass output at node 3 will usually compensate for any Q enhancement resulting
from amplifier phase shift.

3. Notch frequency: The notch frequency is given by

fo = w27 (3-54)

Adjustment of f, usually is not required if the circuit is first tuned to f;, since f,, will then
fall in. However, if independent tuning of the notch frequency is desired, R should be made
adjustable. The notch frequency is measured by determining the input frequency where E_,
is nulled.

Example 3-16 Design of an Active Elliptic-Function Low-Pass Filter using the
State-Variable Configuration

Required:

Design an active elliptic-function low-pass filter corresponding to a 0.18-dB ripple,
a cutoff of 1000 Hz and a minimum attenuation of 18 dB at 1556 Hz using the state-
variable (biquad) configuration for elliptic-function low-pass filters of Figure 3-29.

Result:
(a) Open Filter Solutions.

Check the Stop Band Freq box.

Enter .18 in the Pass Band Ripple (dB) box.
Enter 1000 in the Pass Band Freq box.
Enter 1556 in the Stop Band Freq box.
Check the Frequency Scale Hertz box.

(b) Click the Set Order control button to open the second panel.

Enter 18 for Stop band Attenuation (dB).
Click the Set Minimum Order button and then click Close.
3 Order is displayed on the main control panel.

(¢) Click the Transfer Function button.
Check the Casc box.

The following is displayed:
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Continuous Transfer Function

Wn = 1.095e+04

3040 (S°+ 1.199e+08)

(S® + 3573*S + 5.511e+07) (S + 6613)

Wo = 7423
Q=2.077

3rd Order Low Pass Elliptic

Pass Band Frequency = 1.000 KHz Stop Band Ratio = 1.556
Pass Band Ripple = 180.0 mdB Stop Band Frequency = 1.556 KHz
Stop Band Attenuation = 18.63 dB

(d) The design parameters are summarized as follows:

Section Q = 2.077
Section w, = 7,423
Section w,, = 10,950

a, = 6613 (from the denominator)

(e) A single section is required. Let R = 100 kQ) and C = 0.1uF, and let the gain
equal unity (A = 1). The values are computed as follows:

@)

a =55 = 1787 (3-46)
R =R, = ﬁ = 2798 Q (3-47)
R =R, = ﬁ = 13470 (3-48)
R 40.94 kQ (3-49)
> (w:»c)z - (w())z '
w, \?
Ry = | @, | AR = 45.96 kO (3-50)

Since a real pole is required, Cj is introduced in parallel with R and is calculated by

Cy = %IR = 3260 pF (3-51)

6
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FIGURE 3-30 The elliptic-function low-pass filter of Example 3-16.

(f) The resulting filter is shown in Figure 3-30. The resistor values are modified so that
standard 1-percent values are used and the circuit is adjustable. The sections f;, and
Q are computed by

® _ g8 3.52
fy =5 = 1181 Hz (3-52)
T,
0= % =2.076 (3-53)

The frequency of infinite attenuation is given by

f. = w,2m = 1743Hz (3-54)

Generalized Impedance Converters. The circuit of Figure 3-31 is known as a generalized
impedance converter (GIC). The driving-point impedance can be expressed as

VA

11 7,7,
By substituting RC combinations of up to two capacitors for Z, through Zs, a variety of
impedances can be simulated. If, for instance, Z, consists of a capacitor having an imped-

ance 1/sC, where s = jw and all other elements are resistors, the driving-point impedance is
given by

(3-55)

P SCR,R+R; (3-56)
11 R2
The impedance is proportional to frequency and is therefore identical to an inductor,
having a value of
CR R;R;
=& (3-57)

as shown in Figure 3-32.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)

Copyright © 2006 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.



LOW-PASS FILTER DESIGN

LOW-PASS FILTER DESIGN 129

FIGURE 3-31 A generalized impedance converter
(GIO).

If two capacitors are introduced for Z, and Z;, and Z,, Z,, and Z; are resistors, the result-
ing driving-point impedance expression can be expressed in the form of

Rs

Z =—
1 $2C?R,R,

(3-58)

An impedance proportional to 1/s? is called a D element, whose driving point imped-
ance is given by

Zy = == (3-59)

it

Rs

FIGURE 3-32 A GIC inductor simulation.
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FIGURE 3-33 A GIC realization of a normalized D element.

Equation (3-58) therefore defines a D element having the value

_ CRR,
RS

(3-60)

IfweletC = 1 F, R, = Ry = 1, and R, = R, Equation (3-64) simplifies to D = R.
In order to gain some insight into the nature of this element, let us substitute s = jw into
Equation (3-58). The resulting expression is
RS

Zy = e 3-61
" W’CRR, G-oD

Equation (3-61) corresponds to a frequency-dependent negative resistor (FDNR).

A GIC in the form of a normalized D element and its schematic designation are shown
in Figure 3-33. Bruton (see Bibliography) has shown how the FDNR or D element can be
used to generate active filters directly from the LC normalized low-pass prototype values.
This technique will now be described.

The 1/s Transformation. If all the impedances of an LC filter network are multiplied
by 1/s, the transfer function remains unchanged. This operation is equivalent to impedance-
scaling a filter by the factor 1/s and should not be confused with the high-pass transformation
which involves the substitution of 1/s for s. Section 2.1 under “Frequency and Impedance
Scaling” demonstrated that the impedance scaling of a network by any factor Z does not
change the frequency response, since the Zs cancel in the transfer function, so the validity
of this transformation should be apparent.

When the elements of a network are impedance-scaled by 1/s, they undergo a change in
form. Inductors are transformed into resistors, resistors into capacitors, and capacitors into
D elements, which are summarized in Table 3-1. Clearly, this design technique is extremely
powerful. It enables us to design active filters directly from passive LC circuits. Knowledge
of the pole and zero locations is unnecessary.

The design method proceeds by first selecting a normalized low-pass LC filter. All
capacitors must be restricted to the shunt arms only, since they will be transformed into D
elements which are connected to ground. The dual LC filter (defined by the lower schematic
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TABLE 3-1 The 1/s Impedance Transformation

Transformed Transformed
Element Impedance Element Impedance

IR

—LC
T = T ¢
IRNE

ol

in the tables of Chapter 11 for the all-pole case) is usually chosen to be transformed to min-
imize the number of D elements. The circuit elements are modified by the 1/s transforma-
tion, and the D elements are realized using the normalized GIC circuit of Figure 3-33. The
transformed filter is then frequency- and impedance-scaled in the conventional manner. The
following example demonstrates the design of an all-pole active low-pass filter using the 1/s
impedance transformation and the GIC.

Example 3-17 Design of an Active All-Pole Low-Pass filter using a D Element

Required:

An active low-pass filter

3 dB to 400 Hz

20-dB minimum at 1200 Hz
Minimal ringing and overshoot

Result:
(a) Compute the steepness factor.

f _ 1200 Hz
AT T a00m, 3 (2-11)
(b) Since low transient distortion is desired, a linear phase filter with a phase error of
0.5° will be selected. The curves of Figure 2-62 indicate that a filter complexity of
n = 3 provides over 20 dB of attenuation at 3 rad/s.
The 1/s transformation and a GIC realization will be used.

(c) The normalized LC low-pass filter from Table 11-47 corresponding to n = 3 is
shown in Figure 3-34a. The dual circuit has been selected so that only a single D
element will be required.

(d) The normalized filter is transformed in accordance with Table 3-1, resulting in the
circuit of Figure 3-34b. The D element is realized using the normalized GIC con-
figuration of Figure 3-33, as shown in Figure 3-34c.

(e) Since all normalized capacitors are 1 F, it would be desirable if they were all denor-
malized to a standard value such as 0.01 wF. Using an FSF of 27f, or 2513 and a
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FIGURE 3-34 The network of Example 3-17: (a) normalized low-pass prototype; (b) normalized circuit
after 1/s transformation; (c) realization of D element; and () final circuit.

C’" of 0.01 wF, the required impedance-scaling factor can be found by solving
Equation (2-10) for Z as follows:

C 1
= = = 39,800 2-10
FSF X C" 2513 X 0.01 X 107¢ 5 ( )

z

Using an FSF of 27rf, or 2513 and an impedance-scaling factor Z of 39.8 X 103, the
normalized filter is scaled by dividing all capacitors by Z X FSF and multiplying all
resistors by Z. The final circuit is given in Figure 3-34d. The resistor values were mod-
ified for standard 1-percent values. The filter loss is 6 dB, corresponding to the loss due
to the resistive source and load terminations of the LC filter.

The D elements are usually realized with dual operational amplifiers which are available
as a matched pair in a single package. In order to provide a bias current for the noninverting
input of the upper amplifier, a resistive termination to ground must be provided. This resis-
tor will cause a low-frequency roll-off, so true DC-coupled operation will not be possible.
However, if the termination is made much larger than the nominal resistor values of the cir-
cuit, the low-frequency roll-off can be made to occur well below the frequency range of
interest. If a low output impedance is required, the filter can be followed by a voltage fol-
lower or an amplifier if gain is also desired. The filter input should be driven by a source
impedance much less than the input resistor of the filter. A voltage follower or amplifier
could be used for input isolation.

Elliptic-Function Low-Pass Filters Using the GIC. The 1/s transformation and GIC
realization are particularly suited for the realization of active high-order elliptic-function
low-pass filters. These circuits exhibit low sensitivity to component tolerances and
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amplifier characteristics. They can be made tunable, and are less complex than the state-
variable configurations. The following example illustrates the design of an elliptic-function
low-pass filter using the GIC as a D element.

Example 3-18 Design of an Active Elliptic-Function Low-Pass Filter using D
Elements

Required:

An active low-pass filter
0.18-dB ripple at 260 Hz
45-dB minimum at 270 Hz

Result:
Note: The passive elliptic low-pass filter will be designed for a 1 rad/sec cutoff and 1
terminations to obtain the initial low-pass filter prototype.

(a) Compute the steepness factor.
_fy  270Hz

A= f. 260Hz

= 1.0385 (2-11)

(b) Open Filter Solutions.

Check the Stop Band Freq box.

Enter 0.18 in the Pass Band Ripple (dB) box.

Enter 1 in the Pass Band Freq box.

Enter 1.0385 in the Stop Band Freq box.

The Frequency Scale Rad/Sec box should be checked.
Enter 1 for Source Res and Load Res.

(¢) Click the Set Order control button to open the second panel.

Enter 45 for Stop band Attenuation (dB).
Click the Set Minimum Order button and then click Close.

9 Order is displayed on the main control panel.

(d) Click the Circuits button.

Two schematics are presented by Filter Solutions. Select the one representing the
dual (Passive Filter 2), which is shown in Figure 3-35a4.

~

(e) The 1/s impedance transformation modifies the elements in accordance with Table
3-1, resulting in the circuit of Figure 3-35b. The D elements are realized using the
GIC of Figure 3-33, as shown in Figure 3-35c.

(f) The normalized circuit can now be frequency- and impedance-scaled. Since all nor-
malized capacitors are equal, it would be desirable if they could all be scaled to a
standard value such as 0.1 wF. The required impedance-scaling factor can be deter-
mined from Equation (2-10) by using an FSF of 27f, or 1634, corresponding to a
cutoff of 260 Hz. Therefore,

c 1

“ESFXC 1634 x01x 106 0120 (2-10)

z
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Frequency and impedance scaling by dividing all capacitors by Z X FSF and multiply-
ing all resistors by Z results in the final filter circuit of Figure 3-35d having the fre-
quency response of Figure 3-35e. The resistor values have been modified so that
1-percent values are used and the transmission zeros can be adjusted. The frequency of
each zero was computed by multiplying each zero in rad/sec of Figure 3-35a by f..
A resistive termination is provided so that bias current can be supplied to the amplifiers.

The transmission zeros generated by the circuit of Figure 3-35d occur because at spe-
cific frequencies the value of each FDNR is equal to the positive resistor in series, there-
fore creating cancellations or null in the shunt branches. By adjusting each D element, these
nulls can be tuned to the required frequencies. These adjustments are usually sufficient to
obtain satisfactory results. State-variable filters permit the adjustment of the poles and
zeros directly for greater accuracy. However, the realization is more complex—for instance,

1.000 Q 358.3 mH 787.9 mH 988.9 mH 1.612H 1.159 H

756.4 mH 235.0 mH

1.000 Q
349.0 mF 381.7 mF 877.4 mF 1.166 F
1.080 R/S 1.042 R/S 1.227 RIS 1.910 R/S
(a)
1”F 0.3583 Q 0.7879 Q 0.9889 O 16120 1159 Q
[ o ™ -~ o
2458 Q 24120 0.7564 Q j 0.2350 Q
— 0.349 — 0.3817 — 0.8774 — 1.166 1 1F
(b)
1"F 0.3583 Q 0.7879 0.9889 16120 1.159 Q
1T
2.458 Q s 0.7564 Q 5 0.2350 Q
1F == -
102 3
1F 7 1F
A 0.349 O
1Q 1Q

()

FIGURE 3-35 The filter of Example 3-18: (a) normalized low-pass filter; (b) circuit after 1/s transforma-
tion; (¢) normalized configuration using GICs for D elements; (d) denormalized filer; and (e) frequency
response.
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0.1uF 221kQ 4.87kQ
Il A A °
1T
15.0k2 14.7kQ
0.1uF 0.1uF=F
6.190 Q 1Meg Q

0.1uF
2 2.1kQ

33
f:I 500 Q
26190 Q
280.8 Hz 270.9 Hz
0.00 T - :
0 200 \ 400 600 800)
-20.00 \
D _40.00 \[\
-80.00
Hz
(e)

FIGURE 3-35 (Continued)

the filter of Example 3-18 would require twice as many amplifiers, resistors, and poten-
tiometers if the state-variable approach were used.
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Source: ELECTRONIC FILTER DESIGN HANDBOOK

CHAPTER 4
HIGH-PASS FILTER DESIGN

4.1 LC HIGH-PASS FILTERS

LC high-pass filters can be directly designed by mapping the values of a normalized LC
low-pass filter into a high-pass filter. This allows use of existing tables of normalized low-
pass values to create high-pass filters.

The Low-Pass to High-Pass Transformation

If 1/s is substituted for s in a normalized low-pass transfer function, a high-pass response
is obtained. The low-pass attenuation values will now occur at high-pass frequencies,
which are the reciprocal of the corresponding low-pass frequencies. This was demonstrated
in Section 2.1.

A normalized LC low-pass filter can be transformed into the corresponding high-pass
filter by simply replacing each coil with a capacitor and vice versa, using reciprocal ele-
ment values. This can be expressed as

I

Gy = TLP 4-1)

and Ly, = é (4-2)
P

The source and load resistive terminations are unaffected.
The transmission zeros of a normalized elliptic-function low-pass filter are also recip-
rocated when the high-pass transformation occurs. Therefore,

w,(hp) = (4-3)

w.(Lp)

To minimize the number of inductors in the high-pass filter, the dual low-pass circuit
defined by the lower schematic in the tables of Chapter 11 is usually chosen to be trans-
formed except for even-order all-pole filters, where either circuit may be used. For elliptic
function high-pass filters, the Filter Solutions program is used to obtain a low-pass filter
prototype normalized to 1 radian/sec and 1-). Thus, the circuit representing the dual
(Passive Filter 2) is used.

The objective is to start with a low-pass prototype containing more inductors than
capacitors since after the low-pass to high-pass transformation the result will contain more
capacitors than inductors.

137
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After the low-pass to high-pass transformation, the normalized high-pass filter is
frequency- and impedance-scaled to the required cutoff frequency. The following two
examples demonstrate the design of high-pass filters.

Example 4-1 Design of an All-Pole LC High-Pass Filter from a Normalized Low-
Pass Filter

Required:

An LC high-pass filter
3dBat1 MHz

28-dB minimum at 500 kHz
R, =R, = 3000

Result:
(a) To normalize the requirement, compute the high-pass steepness factor A,.

fo 1MHz
A= £~ 500kHz 2 (2-13)

(b) Select a normalized low-pass filter that offers over 28 dB of attenuation at 2 rad/s.

Inspection of the curves of Chapter 2 indicates that a normalized n = 5 Butterworth low-
pass filter provides the required attenuation. Table 11-2 contains element values for the
corresponding network. The normalized low-pass filter for n = 5 and equal terminations
is shown in Figure 4-1a. The dual circuit as defined by the lower schematic of Table 11-2
was chosen.

(c) To transform the normalized low-pass circuit to a high-pass configuration, replace
each coil with a capacitor and vice versa, using reciprocal element values, as shown
in Figure 4-1b.

(d) Denormalize the high-pass filter using a Z of 300 and a frequency-scaling factor
(FSF) of 27f, of 6.28 X 10°.

1

., Cc 0.618 _ ]
ClL=ESEXZ ™~ 628 x 100 x 300 _ S8 PF (2-10)
C', = 265 pF
C. = 858 pF
1
%300
. _LXZ_ 1618 B

Ly = “5F = ens w0 = 205 wH (2-9)

L, =29.5uH

The final filter is given in Figure 4-1c, having the frequency response shown in
Figure 4-1d.
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10 Ly=0618 H Ly=2H Lg=0618 H
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i

_I_cza 1618 F _I.c.= 1618 F 19
(@)
1 1 oA
1a Cr* Gete Cav3F Co=Gee "
it 11 Il
\/ 1T 1 11
Lo® L N Le= 1y 10
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858 pF 265 pF 858 pF
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©
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'
i
:
~30d8} |
| i
] |
1 1
500k 1M
Hz
@

FIGURE 4-1 The high-pass filter of Example 4-1: (a) normalized low-pass fil-
ter; (b) high-pass transformation; (c¢) frequency- and impedance-scaled filter; and
(d) frequency response.

Example 4-2 Design of an Elliptic-Function LC High-Pass Filter using Filter
Solutions

Required:

An LC high-pass filter
2-dB maximum at 3220 Hz
52-dB minimum at 3020 Hz
R, =R, =300Q
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Result:
(a) Compute the high-pass steepness factor A,.

f. _ 3220Hz
A, = 7= 3000 1.0662 (2-13)

(b) Since the filter requirement is very steep, an elliptic-function will be selected.

Open Filter Solutions.

Check the Stop Band Freq box.

Enter .2 in the Pass Band Ripple (dB) box.

Enter 1 in the Pass Band Freq box.

Enter 1.0662 in the Stop Band Freq box.

The Frequency Scale Rad/Sec box should be checked.
Enter 1 for the Source Res and Load Res.

(c¢) Click the Set Order control button to open the second panel.

Enter 52 for Stop band Attenuation (dB).
Click the Set Minimum Order button and then click Close.
9 Order is displayed on the main control panel

(d) Click the Circuits button.

Two schematics are presented by Filter Solutions. Select the one representing the dual
(Passive Filter 2), which is shown in Figure 4-2a.

(e) To transform the normalized low-pass circuit into a high-pass configuration, con-
vert inductors into capacitors and vice versa, using reciprocal values. The trans-
formed high-pass filter is illustrated in Figure 4-2b. The transmission zeros are also
transformed by conversion to reciprocal values.

1.000Q 339.8 mH 1.012H 1.298 H 1.744 H 1229 H

1.000Q

3151 mF 665.0 mF 974.7 mF 1.205F

1.071 RIS 1.122R/S 1.308 RIS 2107 R/S
(a)

FIGURE 4-2 The high-pass filter of Example 4-2: (a) normalized low-pass filter from Filter Solutions;
(b) transformed high-pass filter; (¢) frequency- and impedance-scaled high-pass filter; and (d) frequency
response.
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1.0000 339.8 mH 1.01Z2H 1298 H 1.744 1 12291

1.000Q

315.1 mF 665.0 mF 974.7 mF 1.205F

1.071 RIS 1.122 R/S 1.308 R/S 2107 R/S

300 Q2 0.4849 uF 0. 1628 uF 0.1260 uF 0. 09447 uF 0.1341 pF
|

—VW_|\ l |\ l l AN
0.05959 uF 0.1380 uF 0.2746 uF 0.8815 uF

' ’ 300 Q
® 47.06 mH 22.30 mH 15.21 mH 12.31 mH

3006 Hz 2870 Hz 2462 Hz 1528 Hz

()
0 .
_20 -
S —40-
_60 .
0 1 2 3 4
kHz
(d)

FIGURE 4-2 (Continued)
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Cy Cs Cy
FIGURE 4-3 The T-to-pi capacitance transformation.

(f) Denormalize the high-pass filter using a Z of 300 and a frequency-scaling factor of
2m@f, or 20,232. The denormalized elements are computed by

., _LXZ
L = FSE (2-9)
and C' = _c (2-10)
FSF X Z

The resulting denormalized high-pass filter is illustrated in Figure 4-2¢. The frequency of
each zero was computed by multiplying each zero in rad/sec of Figure 4-2b by the design
cutoff frequency of f, = 3220 Hz. The frequency response is given in Figure 4-2d.

The T-to-Pi Capacitance Conversion. When the elliptic-function high-pass filters are
designed for audio frequencies and at low impedance levels, the capacitor values tend
to be large. The T-to-pi capacitance conversion will usually restore practical capacitor
values.

The two circuits of Figure 4-3 have identical terminal behavior and are therefore equiv-
alent if

C = €6 (4-4)
@ 3C

¢, =25 4-5)
b 3c
C,C,

Cc === 4-6

c EC ( )

where 2C = C, + C, + C,. The following example demonstrates the effectiveness of
this transformation in reducing large capacitances.

Example 4-3 The T- to PI-Capacitance Transformation to Reduce Capacitor Values

Required:
The high-pass filter of Figure 4-2¢ contains a 0.8815-wF capacitor in the last shunt
branch. Use the T-to-pi transformation to provide some relief.

Result:
The circuit of Figure 4-2c¢ is repeated in Figure 4-4a showing a “T” of capacitors includ-
ing the undesirable 0.8815 wF capacitor. The T-to-pi transformation results in
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i

0.09447 uF 0.1341 uF
| ° |

AN l AN
71 08815 uF

(@)

0.01141 uF

|
IX
0.0750 uF—L —L0.1065 uF

|_.
|_
|_

(b)

FIGURE 4-4 The T-to-pi transformation of Example 4-3: (a) the high-pass filter of Example 4-2; and
(b) the modified configuration.

c =S 40750 wE (4-4)
@ 3C
C1C3
C, = 5 = 001141 uF (4-5)
C2C3
and C.= <S¢ = 01065 pF (4-6)

where C, = 0.09447 uF, C, = 0.8815 pF, and C; = 0.1341 wF. The transformed cir-
cuit is given in Figure 4-4b, where the maximum capacitor value has undergone more
than an 8:1 reduction.

4.2 ACTIVE HIGH-PASS FILTERS

The Low-Pass to High-Pass Transformation

Active high-pass filters can be derived directly from the normalized low-pass configurations
by a suitable transformation in a similar manner to LC high-pass filters. To make the conver-
sion, replace each resistor by a capacitor having the reciprocal value and vice versa, as follows:

1

Cow =R, (4-7)
1

R =G (4-8)
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It is important to recognize that only the resistors that are a part of the low-pass RC net-
works are transformed into capacitors by Equation (4-7). Feedback resistors that strictly
determine operational amplifier gain, such as R, and R, in Figure 3-20q, are omitted from
the transformation.

After the normalized low-pass configuration is transformed into a high-pass filter, the
circuit is frequency- and impedance-scaled in the same manner as in the design of low-
pass filters. The capacitors are divided by Z X FSF and the resistors are multiplied by Z.
A different Z can be used for each section, but the FSF must be uniform throughout the
filter.

All-Pole High-Pass Filters. Active two-pole and three-pole low-pass filter sections
were shown in Figure 3-13 and correspond to the normalized active low-pass values
obtained from relevant tables in Chapter 11. These circuits can be directly transformed
into high-pass filters by replacing the resistors with capacitors and vice versa using reci-
procal element values and then frequency- and impedance-scaling the filter network. The
filter gain is unity at frequencies well into the passband corresponding to unity gain at
DC for low-pass filters. The source impedance of the driving source should be much less
than the reactance of the capacitors of the first filter section at the highest passband fre-
quency of interest. The following example demonstrates the design of an all-pole high-
pass filter.

Example 4-4 Design of an Active All-Pole High-Pass Filter

Required:

An active high-pass filter
3 dB at 100 Hz
75-dB minimum at 25 Hz

Result:

(a) Compute the high-pass steepness factor.

_Jf. 100
Ax—f—f—él- (2'13)

(b) A normalized low-pass filter must first be selected that makes the transition from 3
to 75 dB within a frequency ratio of 4:1. The curves of Figure 2-44 indicate that a
fifth-order 0.5-dB Chebyshev filter is satisfactory. The corresponding active filter
consists of a three-pole section and a two-pole section whose values are obtained
from Table 11-39 and are shown in Figure 4-5a.

(c) To transform the normalized low-pass filter into a high-pass filter, replace each
resistor with a capacitor, and vice versa, using reciprocal element values. The nor-
malized high-pass filter is given in Figure 4-5b.

(d) Since all normalized capacitors are equal, the impedance-scaling factor Z will be
computed so that all capacitors become 0.015 wF after denormalization. Since the
cutoff frequency is 100 Hz, the FSF is 2arf, or 628, so that

C 1
= = = 106.1 X 10° 2-1
FSF X C" 628 X 0.015 X 107° 0 2-10)

Z
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Cy429462 F
Cy=6842F
10 10 >—0 Out
190 10 10
In
Cp=0M44 F
Icz S3MTF Ic, = 03033 F
(a)
1
§aez &
1F —0 Out
'
onaa &
113 kQ
154 kQ
0015 uF | 0015 uF 0 Out
0015 uF 0015 uF | 0.015 uF
In
931 k2

©

FIGURE 4-5 The all-pole high-pass filter of Example 4-4: (a) normalized low-pass filter; (b) high-pass
transformation; and (c) frequency- and impedance-scaled high-pass filter.

If we frequency- and impedance-scale the normalized high-pass filter by dividing all
capacitors by Z X FSF and multiplying all resistors by Z, the circuit of Figure 4-5¢ is
obtained. The resistors were rounded off to standard 1-percent values.

Elliptic-Function High-Pass Filters. High-pass elliptic-function filters can be designed
using the elliptic-function VCVS configuration discussed in Section 3.2. This structure can
introduce transmission zeros either above or below the pole locations and is therefore suit-
able for elliptic-function high-pass requirements.

The normalized low-pass poles and zeros must first be transformed to the high-pass
form. Each complex low-pass pole pair consisting of a real part o and imaginary part 3 is
transformed into a normalized high-pass pole pair as follows:
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_ o — 1 -
Uy = 2 200, (4-9)

B 1 1
Bhpzmzwfow/l—@ (4-10)

The second forms of Equations 4-9 and 4-10 involving Q and w, are used when these
parameters are provided by the Filter Solutions program.
The transformed high-pass pole pair can be denormalized by

oy, = @, X FSF (4-11)

Bip, = By X FSF (4-12)
where FSF is the frequency scaling factor 27f,. If the pole is real, the normalized pole is

transformed by

I
G = o (4-13)

The denormalized real pole is obtained from

Qonp = Xopp X FSF (4-14)

To transform zeros, we first compute

1
w.(Lp)

w.(hp) = (4-3)

Denormalization occurs by
'’ (hp) = w,(hp) X FSF (4-15)
The elliptic-function VCVS circuit of Section 3.2 is repeated in Figure 4-6. The ele-

ments are then computed as follows:
First, calculate

2ay,
4= (4-16)
Vi) + By
__ lolbp)P?
() + By

c = Vi) + B’ (4-18)

(4-17)

where aj,,, B}, and w’.(hp) are the denormalized high-pass pole-zero coordinates.
Select C

c,=cC (4-19)

Then C=C =5 (4-20)
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C,
Jd1l
L Ry = (K-DR
Re¢ = R —_—— — —
O O N NG | B iy
v VW X ) !
= ——O Out
- BB
In Ot ’ ’ / l T'
‘ R
\—' l——- l s l
C3 04 I |
Rs C. Rs ' = '
1 | |
t_Used on last
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A (&
e \/\/\= VvV i 4]' } _ 1L o OU'
1IN Oy I I
11 11 R
1 I s |
Cs Ca I l
: i
= I
—LUsed on last
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(b)
FIGURE 4-6 VCVS elliptic-function high-pass section: (a) circuit for K > 1; and () circuit for K < 1.

C,(b— 1)
Let Gz=——(F— (4-21)
Ry =—1 (4-22)
’ CCI\/};
R, =R, = 2R, (4-23)
R, = 4Vb (4-24)
47 eC,(1 = b) + 4cC,

26, a 2 ( 1 )

K=2+ "2~ + — —aC (4-25)
G 2V Vb \Re T

R,=R (4-26)
R,=(K— DR 4-27)
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where R can be arbitrarily chosen. If K is less than 1, the circuit of Figure 4-6b is used.
Then

R,, = (1 — K)R, (4-28)
Ry, = KR, (4-29)
) ) bKC,
Section gain = W (4-30)
Rs is determined from the denormalized real pole by
Rs = Csollé,hp (4-31)

where Cs can be arbitrarily chosen and ay,,, is @, X FSF. The design procedure is illus-
trated in Example 4-5.

Example 4-5 Design of an Active Elliptic-Function High-Pass Filter using the VCVS
Configuration

Required:

An active high-pass filter
0.2-dB maximum at 3000 Hz
35-dB minimum rejection at 1026 Hz

Result:

(a) Compute the high-pass steepness factor.

f. 3000
A, = 7= 1026 = 2.924 (2-13)

(b) Open Filter Solutions.

Check the Stop Band Freq box.

Enter .177 in the Pass Band Ripple (dB) box.
Enter 1 in the Pass Band Freq box.

Enter 2.924 in the Stop Band Freq box.
Check the Frequency Scale Radians box.

(c) Click the Set Order control button to open the second panel.

Enter 35 for Stop band Attenuation (dB).
Click the Set Minimum Order button and then click Close.
3 Order is displayed on the main control panel.

(d) Click the Transfer Function button.

Check the Casc box.
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The following is displayed:

Continuous Transfer Function

Wn = 3.351

1143 (S%+11.23)

(S® +.7727*S + 1.447) (S + .8871)

Wo =1.203
Q =1.557

3rd Order Low Pass Elliptic

Pass Band Frequency = 1.000 Rad/Sec  Stop Band Ratio = 2.924
Pass Band Ripple = 177.0 mdB Stop Band Frequency = 2.924 Rad/Sec
Stop Band Attenuation = 37.43 dB

(e) The design parameters are summarized as follows:
Section Q = 1.557
Section w, = 1.203
Section w,, = 3.351
a, = 0.8871 (from the denominator)

(f) To compute the element values, first transform the low-pass poles and zeros to the
high-pass form.

Complex pole:

_ 1
P 20w,

A,

= 0.2670 (4-9)

1 1

By = w, 1 - TQZ = 0.7872 (4-10)
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The pole-pair is denormalized by

a}, = 5033 @-11)
By, = 14,838 (4-12)
where FSF = 27 X 3000.
Real pole:
a, = 0.8871
gy = 1.127 (4-13)
gy, = 21,248 (4-14)
Zero:
w, = 3.351
w,(hp) = 0.2984 (4-3)
' (hp) = 5625 (4-15)
(g) The results of (¢) are summarized as follows:
ay, = 5033
By, = 14,838
o, = 21,248

' (hp) = 5625

The element values can now be computed:

a = 0.6424 (4-16)
b = 0.1289 (4-17)
¢ = 15,668 (4-18)

Let C =0.02 uF
then C, = 0.02 pF (4-19)
C; = C, =001 pF (4-20)
C, = —0.00436 uF 4-21)

Let G, =0

R, = 8.89kQ (4-22)
R, =R, = 17.8kQ (4-23)
R, = 526 kQ (4-24)
K =448 (4-25)
Let R, = R = 10kQ (4-26)
R, = 34.8kQ (4-27)

Let Cs = 0.01 pF
Rs = 470 kQ (4-31)

The resulting circuit is illustrated in Figure 4-7.
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—I-o.oz WF 10K 34.8KkR
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0.0t uF | 0.0t uF 5.23 kQ 4.75 kQ
8.87 k)

FIGURE 4-7 The circuit of Example 4-5.

State-Variable High-Pass Filters. The all-pole and elliptic-function active high-pass fil-
ters previously discussed cannot be easily adjusted. If the required degree of accuracy
results in unreasonable component tolerances, the state-variable or biquad approach will
permit independent adjustment of the filter’s pole and zero coordinates. Another feature of
this circuit is the reduced sensitivity of the response to many of the amplifier limitations
such as finite bandwidth and gain.

All-Pole Configuration. In order to design a state-variable all-pole high-pass filter, the
normalized low-pass poles must first undergo a low-pass to high-pass transformation. Each
low-pass pole pair consisting of a real part « and imaginary part 3 is transformed into a nor-
malized high-pass pole pair as follows:

a
N = s @
_ B
By = e (4-10)
The transformed high-pass pole pair can now be denormalized by
oy, = oy, X FSF (4-11)
Bip = By, X FSF (4-12)

where FSF is the frequency-scaling factor 27f,.

The circuit of Figure 4-8 realizes a high-pass second-order biquadratic transfer function.
The element values for the all-pole case can be computed in terms of the high-pass pole
coordinates as follows:

First, compute

0y = Vie)? + By 4-32)

The component values are

|
R =R, = 2a4,C (4-33)
1
R, =R, = woiC (4-34)
2a1’1p

R, = —R 4-35

5= 0 (4-35)

R, = AR (4-36)

where C and R are arbitrary and A is the section gain.
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4
£, 04— —4 Re | R

Lost section only for odd Ns'
FIGURE 4-8 The biquadratic high-pass configuration.

If the transfer function is of an odd order, a real pole must be realized. To transform the
normalized low-pass real pole «, compute

1
Fonp ~ o (4-13)

Then denormalize the high-pass real pole by
a{),hp = oy, X FSF (4-14)

The last section of the filter is followed by an RC network, as shown in Figure 4-8. The
value of R, is computed by

1
R, = ainC 4-37)

where C is arbitrary.
A bandpass output is provided at node 1 for tuning purposes. The bandpass resonant fre-
quency is given by
. wj
0= o (4-38)

R; can be made adjustable and the circuit tuned to resonance by monitoring the phase shift
between E,, and node 1 and adjusting R, for 180° of phase shift at f; using a Lissajous pattern.
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The bandpass Q can then be monitored at node 1 and is given by

0="h (4-39)

’
ahp

R, controls the Q and can be adjusted until either the computed Q is obtained or, more
conveniently, the gain is unity between E;, and node 1 with f; applied.

The following example demonstrates the design of an all-pole high-pass filter using the
biquad configuration.

Example 4-6 Design of an Active All-Pole High-Pass Filter Using a State-Variable
Approach

Required:

An active high-pass filter
3 = (0.1dB at300 Hz
30-dB minimum at 120 Hz
A gain of 2

Result:

(a) Compute the high-pass steepness factor.

fo 300
A, = F =10 25 (2-13)

(b) The curves of Figure 2-45 indicate that a normalized third-order 1-dB Chebyshev
low-pass filter has over 30 dB of attenuation at 2.5 rad/s. Since an accuracy of
0.1 dB is required at the cutoff frequency, a state-variable approach will be used so
that an adjustment capability is provided.

(¢) The low-pass pole locations are found in Table 11-26 and are as follows:
Complex pole a = 0.2257 B = 0.8822
Real pole a, = 0.4513

Complex pole-pair realization:
The complex low-pass pole pair is transformed to a high-pass pole pair as follows:

a 02257
= = = 02722 4-
%= 1 g 02257 + 08822 O “-9)
B 0.8822 B
and Po = v g = 02257 + o8 10639 (4-10)

The transformed pole pair is then denormalized by
ay, = oy, X FSF = 513 (4-11)
Bhy = Byp X FSF = 2005 (4-12)
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where FSF is 27f. or 1885 since f. = 300 Hz. If we choose R = 10 k() and
C = 0.01 pF, the component values are calculated by

wy = Ve, + (B, = 2070 (4-32)

1

then Ry =Ry =50 = 9747 kQ (4-33)
P

R, =R, = w;,c = 4831 kO (4-34)

20!,
Ry = — "R = 4957 Q (4-35)

0
R, = AR = 20kQ (4-36)

where A=2

The bandpass resonant frequency and Q are

_ @ _ 2070 _
fo= T om 329 Hz (4-38)
Ty @329
T, 513 2.015 (4-39)
Real-pole realization:
Transform the real pole:
__ 1 _
m = @y~ 04513 2216 (4-13)

To denormalize the transformed pole, compute

Qopy = o, X FSF = 4177 (4-14)
Using C = 0.01 pF the real pole section resistor is given by
R =1 =2394k0 (4-37)
@0 hp

The final filter configuration is shown in Figure 4-9. The resistors were rounded off to
standard 1-percent values, and R, and R, were made adjustable.

Elliptic-Function Configuration. The biquadratic configuration of Figure 4-8 can
also be applied to the design of elliptic-function high-pass filters. The design of active
high-pass elliptic-function filters using biquads utilizes the Filter Solutions program
provided on the CD-ROM for obtaining normalized low-pass pole-zero locations which
are then converted into high-pass pole-zero locations, are denormalized, and then used
to compute the component values. The parameters obtained from Filter Solutions are
., wy, O, and «,.

The normalized low-pass poles and zeros must first be transformed to the high-pass
form. Each complex low-pass pole pair consisting of a real part o and imaginary part 3 is
transformed into a normalized high-pass pole pair as follows:

_ a _ 1
% T 2+ B> " 200, (4-9)
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32 )
R, 10 kQ
75 kQ Ry
1 50 kQ
C =001 uf
Re: ¢——op—11 C: 0041 uf
£ Ot A R=10 kQ
SR=10ka )
SR-10k Rg = 4990 ns;

Eou
FIGURE 4-9 The all-pole high-pass filter of Example 4-6.
B 1 1
Bhp =2+ 2 = W 1 - 10° (4-10)

The second forms of Equations 4-9 and 4-10 involving Q and w, are used when these
parameters are provided by the Filter Solutions program.
The transformed high-pass pole pair can be denormalized by

oy, = o, X FSF (4-11)
,B;lp = By, X FSF (4-12)

where FSF is the frequency scaling factor 27f,. If the pole is real, the normalized pole is
transformed by

Yn = @ (4-13)
The denormalized real pole is obtained from
oy = oy X FSF (4-14)
To transform zeros, we compute
w.(hp) = (4-3)

w.(Lp)
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The component values are computed by using the same formulas as for the all-pole case,
except for R, which is given by
2 — Zal;pa)(’) X
> (@) — [wlhp)P?
where w’ (hp) is the denormalized high-pass transmission zero which is obtained from
w!(hp) = w, (hp) X FSF (4-41)

(4-40)

As in the all-pole circuit, the bandpass resonant frequency f; is controlled by R, and the
bandpass Q is determined by R,. In addition, the section notch can be adjusted if R, is made
variable. However, this adjustment is usually not required if the circuit is first tuned to f,
since the notch will then usually fall in.

The following example illustrates the design of an elliptic-function high-pass filter
using the biquad configuration of Figure 4-8.

Example 4-7 Design of an Active Elliptic-Function High-Pass Filter Using a State-
Variable Approach

Required:

An active high-pass filter
0.3-dB maximum ripple above 1000 Hz
18-dB minimum at 643 Hz

Result:

(a) Compute the high-pass steepness factor.

A _ fe _ 1000

s f = m = 1.556 (2—13)

(b) Open Filter Solutions.

Check the Stop Band Freq box.

Enter .18 in the Pass Band Ripple (dB) box.
Enter 1 in the Pass Band Freq box.

Enter 1.556 in the Stop Band Freq box.
Check the Frequency Scale Radians box.

(c) Click the Set Order control button to open the second panel.

Enter 18 for Stop band Attenuation (dB).
Click the Set Minimum Order button and then click Close.
3 Order is displayed on the main control panel.

(d) Click the Transfer Function button.

Check the Casc box.
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The following is displayed:
Continuous Transfer Function

Whn = 1.743

4838 (S° +3.037)

(S+1.053) (S’ + .5687*S + 1.396)

Wo = 1.181
Q=2.077

3rd Order Low Pass Elliptic

Pass Band Frequency = 1.000 Rad/Sec Stop Band Ratio = 1.556
Pass Band Ripple = 180.0 mdB Stop Band Frequency = 1.556 Rad/Sec
Stop Band Attenuation = 18.63 dB

The design parameters are summarized as follows:

Section Q = 2.077

Section w, = 1.181

Section w,, = 1.743
a, = 1.053 (from the denominator)

(e) To compute the element values, first transform the normalized low-pass poles and
zeros to the high-pass form.

Complex pole:

1

o = m = 0.2038 (4-9)

Ay,

1 1
Bhp = wf() 1 - TQz = 0.8218 (4-10)
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Zero:

1

w,(hp) = ﬁLp) = 1743 = 05737 (4-3)
(f) The poles and zeros are denormalized as follows:
oy, = o, X FSF = 1280 (4-11)
Biy = By, X FSF = 5163 (4-12)
and w.(hp) = w, (hp) X FSF = 3605 (4-41)

where FSF = 27f, or 6283.
(g) If we arbitrarily choose C = 0.01 wF and R = 100 k{2, the component values can

be obtained by

wy = Vi)’ + (B, = 5319 (4-32)

T B
then R =R, = 2aiC 39.1kQ (4-33)

_p - 1 _
R, =Ry = o 18.8 kQ) (4-34)

2a{1pw6

Ri=——+————R=289.0kQ 4-40
ST (@ laLhp)P (40
and Ry = AR = 100 kQ (4-36)

where the gain A is unity.
The bandpass resonant frequency and Q are determined from

’

w,
fo =5, = 84THz (4-38)
T,
and 0= f° = 2.077 (4-39)
o,

The notch frequency occurs at w,(hp) X f. or 574 Hz.
(d) The normalized real low-pass pole is transformed to a high-pass pole:

Ao = aio = 0.950 (4-13)

and is then denormalized by
@y = @opp X FSF = 5967 (4-14)

Resistor R, is found by

R, = e = 16.8kQ (4-37)

where C = 0.01 wF.
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FIGURE 4-10 The elliptic-function high-pass filter of Example 4-7: (a) filter using the biquad
configuration; and (b) frequency response.

The final circuit is given in Figure 4-10a using standard 1-percent values with R, and R;
made adjustable. The frequency response is illustrated in Figure 4-10b.

High-Pass Filters Using the GIC. The generalized impedance converter (GIC) was first
introduced in Section 3.2. This versatile device is capable of simulating a variety of differ-
ent impedance functions. The circuit of Figure 3-28 simulated an inductor whose magni-
tude was given by

CR,R,R;

R, (3-61)
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FIGURE 4-11 A normalized inductor using the GIC.

If we set R, through R; equal to 1 ) and C = 1 F, a normalized inductor is obtained
where L = R;. This circuit is shown in Figure 4-11.

An active realization of a grounded inductor is particularly suited for the design of
active high-pass filters. If a passive LC low-pass configuration is transformed into a high-
pass filter, shunt inductors to ground are obtained which can be implemented using the
GIC. The resulting normalized filter can then be frequency- and impedance-scaled. If Ry is
made variable, the equivalent inductance can be adjusted. This feature is especially desirable
in the case of steep elliptic-function high-pass filters since the inductors directly control the
location of the critical transmission zeros in the stopband.

The following example illustrates the design of an active all-pole high-pass filter
directly from the LC element values using the GIC as a simulated inductance.

Example 4-8 Design of an Active All-Pole High-Pass Filter Using a GIC Approach

Required:

An active high-pass filter
3 dB at 1200 Hz
35-dB minimum at 375 Hz

Result:

(a) Compute the high-pass steepness factor.

o 1200

sTf T 375

=32 (2-13)

The curves of Figure 2-45 indicate that a third-order 1-dB Chebyshev low-pass fil-
ter provides over 35 dB of attenuation at 3.2 rad/s. For this example, we will use a
GIC to simulate the inductor of an n = 3 LC high-pass configuration.

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2006 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.



HIGH-PASS FILTER DESIGN

HIGH-PASS FILTER DESIGN 161
A _r A_r
10 L4=2216H L3=2216H 10 Zf:‘ z-f‘f
v vy J_ v 11 Tl
4
C,:10883 F .[_ 19 o83 " 10
(a) ®)

© )

FIGURE 4-12 The all-pole high-pass filter of Example 4-8 using the GIC: (@) normalized low-pass filter;
(b) transformed high-pass filter; (c) active inductor realization; and (d) the final network after scaling.

(b) The normalized low-pass filter is obtained from Table 11-31 and is shown in Figure
4-12a. The dual filter configuration is used to minimize the number of inductors in
the high-pass filter.

(c) To transform the normalized low-pass filter into a high-pass configuration, replace
the inductors with capacitors, and vice versa, using reciprocal element values. The
normalized high-pass filter is shown in Figure 4-12b. The inductor can now be
replaced by the GIC of Figure 4-11, resulting in the high-pass filter of Figure 4-12c.

(d) The filter is frequency- and impedance-scaled. Using an FSF of 277f, or 7540 and a
Z of 10, divide all capacitors by Z X FSF and multiply all resistors by Z. The final
configuration is shown in Figure 4-12d using standard 1-percent resistor values.

Active Elliptic-Function High-Pass Filters Using the GIC. Active elliptic-function
high-pass filters can also be designed directly from normalized elliptic function low-pass
filters using the GIC. This approach is much less complex than a high-pass configuration
involving biquads, and still permits adjustment of the transmission zeros. Design of an
elliptic-function high-pass filter using the GIC and the Filter Solutions program is demon-
strated in the following example.
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Example 4-9 Design of an Active Elliptic-Function High-Pass Filter Using a GIC
Approach

Required:

An active high-pass filter
0.5-dB maximum at 2500 Hz
60-dB minimum at 1523 Hz

Result:
(a) Compute the high-pass steepness factor.

fo 2500

s = 7 1503~ 1.641 (2-13)

Open Filter Solutions.

Check the Stop Band Freq box.

Enter .18 in the Pass Band Ripple (dB) box.

Enter 1 in the Pass Band Freq box.

Enter 1.641 in the Stop Band Freq box.

The Frequency Scale Rad/Sec box should be checked.
Enter 1 for the Source Res and Load Res.

(b) Click the Set Order control button to open the second panel.

Enter 60 for the Stopband Attenuation (dB).

Click the Set Minimum Order button and then click Close.
6 Order is displayed on the main control panel.

Check the Even Order Mod box.

(¢) Click the Circuits button.

Two schematics are presented by Filter Solutions. Select the one representing the
dual (Passive Filter 2), which is shown in Figure 4-13a.

(d) To transform the network into a normalized high-pass filter, replace each inductor
with a capacitor having a reciprocal value, and vice versa. The zeros are also reci-
procated. The normalized high-pass filter is given in Figure 4-13b.

(e) The inductors can be replaced using the GIC inductor simulation of Figure 4-11,
resulting in the circuit of Figure 4-13c.

To scale the network, divide all capacitors by Z X FSF and multiply all resistors by Z,
which is arbitrarily chosen at 10* and FSF is 277, or 15,708. The final filter is shown
in Figure 4-13d. The stopband peaks were computed by multiplying each nor-
malized high-pass transmission zero by f. = 2500 Hz, resulting in the frequencies
indicated.
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6th Order Low Pass Elliptic

Pass Band Frequency = 1.000 Rad/Sec  Stop Band Ratio = 1.641
Pass Band Ripple = 180.0 mdB Stop Band Frequency = 1.641 Rad/Sec
Stop Band Attenuation = 63.00 dB

1.000Q 1.349H 1545 H 1.023H

142.8 mH
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1693 RIS 2284 RIS
(@)
1 3149 F 1 5145 1 0123 F
10 I¢ ¢ I
1€ AN AN
11 F B I ™
0.2457 0.1428 1Q
Q) 1 H _1 H 1 H
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1.693 2.284
(b)

FIGURE 4-13 The elliptic-function high-pass filter of Example 4-9: (@) normalized low-pass filter;
(b) transformed high-pass filter; (c) high-pass filter using the GIC; and (d) frequency- and impedance-scaled
network.
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FIGURE 4-13 (Continued)
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CHAPTER 5
BANDPASS FILTERS

5.1 LC BANDPASS FILTERS

Bandpass filters were classified in Section 2.1 as either narrowband or wideband. If the
ratio of upper cutoff frequency to lower cutoff frequency is over an octave, the filter is con-
sidered a wideband type. The specification is separated into individual low-pass and high-
pass requirements and is simply treated as a cascade of low-pass and high-pass filters.
The design of narrow-band filters becomes somewhat more difficult. The circuit config-
uration must be appropriately chosen and suitable transformations may have to be applied to
avoid impractical element values. In addition, as the filter becomes narrower, the element Q
requirements increase and component tolerances and stability become more critical.

Wideband Filters

Wideband bandpass filters are obtained by cascading a low-pass filter and a high-pass fil-
ter. The validity of this approach is based on the assumption that the filters maintain their
individual responses even though they are cascaded.

The impedance observed at the input or output terminals of an LC low-pass or high-pass
filter approaches the resistive termination at the other end at frequencies well in the pass-
band. This is apparent from the equivalent circuit of the low-pass filter at DC and the high-
pass filter at infinite frequency. At DC, the inductors become short circuits and capacitors
become open circuits, and at infinite frequency the opposite conditions occur. If a low-pass
and high-pass filter are cascaded and both filters are designed to have equal source and load
terminations and identical impedances, the filters will each be properly terminated in their
passbands if the cutoff frequencies are separated by at least one or two octaves.

If the separation between passbands is insufficient, the filters will interact because of
impedance variations. This effect can be minimized by isolating the two filters through an
attenuator. Usually 3 dB of loss is sufficient. Further attenuation provides increased isola-
tion. Table 5-1 contains values for T and 7r attenuators ranging from 1 to 10 dB at an imped-
ance level of 500 (). These networks can be impedance-scaled to the filter impedance level
R if each resistor value is multiplied by R/500.

Example 5-1 Design of a Wideband LC Bandpass Filter

Required:

An LC bandpass filter

3 dB at 500 and 2000 Hz

40-dB minimum at 100 and 4000 Hz
R, =R, = 600 Q)

165
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TABLE 5-1 T and 7 Attenuators

R, Ry
500 Q -— Ry —= 500 Q 500 O -—
o 1]
dB Ry Ry Rq Ry
1 28.8 4330 8700 57.7
2 57.3 2152 4362 116
3 85.5 1419 2924 176
4 113 1048 2210 239
5 140 822 1785 304
6 166 669 1505 374
7 191 558 1307 448
8 215 473 1161 528
9 238 406 1050 616
10 260 351 963 712
Result:

(a) Since the ratio of upper cutoff frequency to lower cutoff frequency is 4:1, a wide-
band approach will be used. The requirement is first separated into individual low-
pass and high-pass specifications:

High-pass filter: Low-pass filter:
3 dB at 500 Hz 3 dB at 2000 Hz
40-dB minimum at 100 Hz ~ 40-dB minimum at 4000 Hz

(b) The low-pass and high-pass filters are designed independently, using the design
methods outlined in Sections 3.1 and 4.1 as follows:

Low-pass filter:
Compute the low-pass steepness factor.

/i _ 4000 Hz

A; T f 2000Hz 2 @1D
Figure 2-43 indicates that a fifth-order 0.25-dB Chebyshev normalized low-pass
filter provides over 40 dB of attenuation at 2 rad/s. The normalized low-pass filter
is obtained from Table 11-29 and is shown in Figure 5-1a. The filter is frequency-
and impedance-scaled by multiplying all inductors by Z/FSF and dividing all
capacitors by Z X FSF, where Z is 600 and the frequency-scaling factor FSF is 27f,
or 12,560. The denormalized low-pass filter is shown in Figure 5-1b.

High-pass filter:
Compute the high-pass steepness factor:
f _ 500Hz
A= f. 100Hz 2-13)

Using Figure 2-34, an n = 3 Butterworth normalized low-pass filter is selected to meet
the attenuation requirement. The normalized filter values are found in Table 11-2 and
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FIGURE 5-1 The LC wideband bandpass filter of Example 5-1: (a) normalized low-pass filter; (b)
scaled low-pass filter; (¢) normalized low-pass filter for high-pass requirement; (d) transformed high-
pass filter; (e) scaled high-pass filter; and (f) combined network.

are shown in Figure 5-1c. Since the low-pass filter is to be transformed into a high-pass
filter, the dual configuration was selected. By reciprocating element values and replac-
ing inductors with capacitors and vice versa, the normalized high-pass filter of Figure
5-1d is obtained. The network is then denormalized by multiplying all inductors by
Z/FSF and dividing all capacitors by Z X FSF, where Z is 600 ) and FSF is 3140. The
denormalized high-pass filter is illustrated in Figure 5-1e.

(¢) The low-pass and high-pass filters can now be combined. A 3-dB T pad will be used
to provide some isolation between filters since the separation of cutoffs is only two
octaves. The pad values are obtained by multiplying the resistances of Table 5-1,
corresponding to 3 dB by 600 )/500 () or 1.2, and rounding off to standard 1-percent
values. The final circuit is shown in Figure 5-f.

Narrowband Filters. Narrowband bandpass filter terminology was introduced in Section 2.1
using the concept of bandpass Q, which was defined by

__h
O = BW; 4

(2-16)

where f; is the geometric center frequency and BW is the 3-dB bandwidth. The geometric
center frequency was given by

Jo= Vil 2-14)

where f; and f, are the lower and upper 3-dB limits.
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Bandpass filters obtained by transformation from a low-pass filter exhibit geometric
symmetry, that is,

fo= VALLS (2-15)

where f, and f, are any two frequencies having equal attenuation. Geometric symmetry
must be considered when normalizing a bandpass specification. For each stopband fre-
quency specified, the corresponding geometric frequency is calculated and a steepness fac-
tor is computed based on the more severe requirement.

For bandpass Qs of 10 or more, the passband response approaches arithmetic symme-
try. The center frequency then becomes the average of the 3-dB points, for instance

it 1,
f="5" (2-17)

The stopband will also become arithmetically symmetrical as the Q increases even further.

The Low-Pass to Bandpass Transformation. A bandpass transfer function can be
obtained from a low-pass transfer function by replacing the frequency variable by a new
variable, which is given by

When fis equal to f;, the bandpass center frequency, the response corresponds to that at
DC for the low-pass filter.

If the low-pass filter has a 3-dB cutoff of £, the corresponding bandpass frequency f can
be found by solving

f

The = signs occur because a low-pass filter has a mirrored response at negative fre-
quencies in addition to the normal response. Solving Equation (5-2) for f, we obtain

2
ek (g) e (5-3)

e =0 { - E) (5-2)

Equation (5-3) implies that the bandpass response has two positive frequencies corre-
sponding to the low-pass response at *f,, as well as two negative frequencies with identi-
cal responses. These frequencies can be obtained from Equation (5-3) and are given by

2
oo (G -4
2
and L=r1+ (ZLCO) + ;}J (5-5)

The bandpass 3-dB bandwidth is
BW =/, —fL=1. (5-6)

The correspondence between a low-pass filter and the transformed bandpass filter is
shown in Figure 5-2. The response of a low-pass filter to positive frequencies is transformed
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FIGURE 5-2 The low-pass to bandpass transformation: (a) low-pass filter; and
(b) transformed bandpass filter.

into the response of the bandpass filter at an equivalent bandwidth. Therefore, a bandpass
filter can be obtained by first designing a low-pass filter that has the required response cor-
responding to the desired bandwidth characteristics of the bandpass filter. The low-pass fil-
ter is then transformed into the bandpass filter.

The reactance of a capacitor in the low-pass filter is given by

_ 1
X = ol (5-7)
where w = 2mf. If we replace the frequency variable f by the expression of Equation (5-1),
the impedance expression becomes

z-—1 (5-8)

) 1
JjoC + Iz
»3C

where @ = 2mrf,,. This is the impedance of a parallel resonant LC circuit where the capaci-
tance is still C and the inductance is 1/wjC. The resonant frequency is w,.
The reactance of an inductor in the low-pass filter is

X, = joL (5-9)

If we again replace the frequency variable using Equation (5-1), the resulting impedance
expression becomes

. 1
Z=jol + - (5-10)

il
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TABLE 5-2 The Low-Pass to Bandpass Transformation

Low-Pass Bandpass Circuit
Branch Configuration Values
L _ 1
¢ L= @2 C (5-11)
Type | O-——I |—-O C 1
Cc= sl (5-12)
1
C C= (5-13)
L L
Type 1l O—SYYY\~—0 o_rvm_,l '__o w{, lﬂ
1
L=—= (514)
Lo Cu wo Co

Lq *_ C1=—!— (5-15)

L'b 0)?, Ll
Type HI Cp o—4 . —o i
1 L=ge  (5-16)

This corresponds to a series resonant LC circuit where the inductance L is unchanged
and C is 1/w}L. The resonant frequency is w,,

We can summarize these results by stating that an LC low-pass filter can be transformed
into a bandpass filter having the equivalent bandwidth by resonating each capacitor with a
parallel inductor and each inductor with a series capacitor. The resonant frequency is f, the
bandpass filter center frequency. Table 5-2 shows the circuits which result from the low-
pass to bandpass transformation.

The Transformation of All-Pole Low-Pass Filters. The LC bandpass filters discussed
in this section are probably the most important type of filter. These networks are directly
obtained by the bandpass transformation from the LC low-pass values tabulated in
Chapter 11. Each normalized low-pass filter defines an infinitely large family of bandpass
filters having a geometrically symmetrical response predetermined by the low-pass
characteristics.

A low-pass transfer function can be transformed to a bandpass type by substitution of
the frequency variable using Equation (5-1). This transformation can also be made directly
to the circuit elements by first scaling the low-pass filter to the required bandwidth and
impedance level. Each coil is then resonated with a series capacitor to the center frequency
fo» and an inductor is introduced across each capacitor to form a parallel tuned circuit that’s
also resonant at f;,. Every low-pass branch is replaced by the associated bandpass branch,
as illustrated by Table 5-2.

Some of the effects of dissipation in low-pass filters were discussed in Section 3.1.
These effects are even more severe in bandpass filters. The minimum Q retirement for the
low-pass elements can be obtained from Figure 3-8 for a variety of filter types. These
minimum values are based on the assumption that the filter elements are predistorted so that
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the theoretical response is obtained. Since this is not always the case, the branch Qs should
be several times higher than the values indicated. When the network undergoes a low-pass-
to-bandpass transformation, the Q requirement is increased by the bandpass Q of the filter.
This can be stated as

O,in (bandpass) = Q. (low-pass) X O, (5-17)

where Oy, = f,/BW; 4p. As in the low-pass case, the branch Qs should be several times
higher than Q, ;. Since capacitor losses are usually negligible, the branch Q is determined
strictly by the inductor losses.

The spread of values in bandpass filters is usually wider than with low-pass filters. For
some combinations of impedance and bandwidth, the element values may be impossible or
impractical to realize because of their magnitude or the effects of parasitics. When this sit-
uation occurs, the designer can use a variety of circuit transformations to obtain a more
practical circuit. These techniques are covered in Chapter 8.

The design method can be summarized as follows:

1. Convert the response requirement into a geometrically symmetrical specification.

2. Compute the bandpass steepness factor A,. Select a normalized low-pass filter from the
frequency-response curves of Chapter 2 that makes the passband to stopband transition
within a frequency ratio of A,.

3. Scale the corresponding normalized low-pass filter from the tables of Chapter 11 to the
required bandwidth and impedance level of the bandpass filter.

4. Resonate each L and C to f; in accordance with Table 5-2.

5. The final design may require manipulation by various transformations so that the val-
ues are more practical. In addition, the branch Qs must be well in excess of Q. (band-
pass) as given by Equation (5-17) to obtain near theoretical results.

min

Example 5-2 Design of an All-Pole LC Bandpass Filter

Required:

Bandpass filter

A center frequency of 1000 Hz

3-dB points at 950 and 1050 Hz

25-dB minimum at 800 Hz and 1150 Hz
R, =R, =600 Q

An available inductor Q of 100

Result:

(a) Convert to a geometrically symmetrical bandpass requirement:
First, calculate the geometric center frequency.

£, = Vf.f, = V950 X 1050 = 998.8 Hz (2-14)

Compute the corresponding geometric frequency for each stopband frequency
given, using Equation (2-18).

fifh =13 (2-18)
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h f2 LA
800 Hz 1247 Hz 447 Hz
867 Hz 1150 Hz 283 Hz

The second pair of frequencies will be retained since they represent the more severe
requirement. The resulting geometrically symmetrical requirement can be summa-
rized as

f, =998.8 Hz
BW, 4, = 100 Hz
BW,, 5 = 283 Hz
(b

~

Compute the bandpass steepness factor.

stopband bandwidth _ 283Hz _
s~ passband bandwidth ~ 100 Hz 2.83 2-19)

(c) Select a normalized low-pass filter that makes the transition from 3 dB to more than
25 dB within a frequency ratio of 2.83:1. Figure 2-34 indicates that an n = 3
Butterworth type will satisfy the response requirement. The normalized low-pass
filter is found in Table 11-2 and is shown in Figure 5-3a.

(d) Denormalize the low-pass filter using a Z of 600 and a frequency-scaling factor
(FSF) of 27rf, or 628, where f, = 100 Hz.
Cc, =C = ¢ = ! = 2.653 uF (2-10)
1T TFRSEXZ O 628 x 600 M

. LXZ _ 2X%X600
Ly =% = g = 191H (2-9)

The denormalized low-pass filter is illustrated in Figure 5-3b.

¢) To make the low-pass to bandpass transformation, resonate each capacitor with a
p p p
parallel inductor and each inductor with a series capacitor using a resonance fre-
quency of f, = 998.8 Hz.

1 1
W2C,  (6275)* X 2.653 X 107

L, =L =9573mH

1 1
WL, (6275)* X 1.91

L =

= 9.573 mH (5-11)

c = = 0.01329 puF (5-12)
where w, = 27f,. The resulting bandpass filter is given in Figure 5-3c.
(f) Estimate if the available inductor Q of 100 is sufficient.

Oin (bandpass) = Q,;, (low-pass) X O, =2 X 10 = 20 (5-17)

where 0, (low-pass) was obtained from Figure 3-8 and Q,,, is fo/BW 45. Since the
available Q is well in excess of Q. (bandpass), the filter response will closely
agree with the theoretical predictions.
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FIGURE 5-3 The bandpass filter of Example 5-2: (a) normalized n = 3 Butterworth low-pass filter;
(b) low-pass filter scaled to 600 £} and an f, of 100 Hz; and (c) transformed bandpass filter.

The response requirement of Example 5-2 was converted to a geometrically symmetrical
specification by calculating the corresponding frequency for each stopband frequency speci-
fied at a particular attenuation level using the relationship f,f, = f2. The pair of frequencies
having the lesser separation was chosen, since this would represent the steeper filter require-
ment. This technique represents a general method for obtaining the geometrically related fre-
quencies that determine the response requirements of the normalized low-pass filter.

Stopband requirements are frequently specified in an arithmetically symmetrical manner
where the deviation on both sides of the center frequency is the same for a given attenuation.
Because of the geometric symmetry of bandpass filters, the attenuation for a particular devi-
ation below the center frequency will be greater than for the same deviation above the cen-
ter frequency. The response curve would then appear compressed on the low side of the
passband if plotted on a linear frequency axis. On a logarithmic scale, the curve would be
symmetrical.

When the specification is stated in arithmetic terms, the stopband bandwidth on a geo-
metric basis can be computed directly by

7
h
where f, is the upper stopband frequency and f; is the geometric center frequency as deter-
mined from the passband limits. This approach is demonstrated in the following example.

BW = f, — (5-18)

Example 5-3 Design of All-Pole LC Bandpass Filter from Arithmetically Symmetrical
Requirement

Required:

Bandpass filter

A center frequency of 50 kHz

3-dB points at =3 kHz (47 kHz, 53 kHz)

30-dB minimum at £7.5 kHz (42.5 kHz, 57.5 kHz)
40-dB minimum at *+10.5 kHz (39.5 kHz, 60.5 kHz)
R, =150Q R, =300 Q
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Result:
(a) Convert to the geometrically symmetrical bandpass requirement.

fo=Nfif, = V47 X 53 X 10° = 49.91 kHz 2-14)

Since the stopband requirement is arithmetically symmetrical, compute the stop-
band bandwidth using Equation (5-18).

BW,, 5 = /o _fi 57.5 X 103 — @991 X 10 _ 14.18 kHz
f 57.5 X 10
BW,, s = 19.33 kHz
Requirement:
f, = 49.91 kHz
BW, ;; = 6 kHz

BW.,, s = 14.18 kHz
BW,, s = 19.33 kHz

(b) Since two stopband bandwidth requirements are given, they must both be converted
into bandpass steepness factors.

stopband bandwidth 14,18 kHz
passband bandwidth ~ 6 kHz

A (40dB) = 3.22

A(30dB) =

= 2.36 (2-19)

(c) A normalized low-pass filter must be chosen that provides over 30 dB of rejection
at 2.36 rad/s and more than 40 dB at 3.22 rad/s. Figure 2-41 indicates that a fourth-
order 0.01-dB Chebysheyv filter will meet this requirement. The corresponding low-
pass filter can be found in Table 11-27. Since a 2:1 ratio of R, to R_ is required, the
design for a normalized R, of 2 () is chosen and is turned end for end. The circuit is
shown in Figure 5-4a.

d

~

The circuit is now scaled to an impedance level Z of 150 and a cutoff of f, = 6 kHz.
All inductors are multiplied by Z/FSF, and the capacitors are divided by Z X FSF,
where FSF is 27f.. The 1-Q) source and 2-() load become 150 and 300 (), respec-
tively. The denormalized network is illustrated in Figure 5-4b.

(e) The scaled low-pass filter is transformed to a bandpass filter at f, = 49.91 kHz by
resonating each capacitor with a parallel inductor and each inductor with a series
capacitor using the general relationship @3LC = 1. The resulting bandpass filter is
shown in Figure 5-4c.

The Design of Parallel Tuned Circuits. The simple RC low-pass circuit of Figure 5-5a
has a 3-dB cutoff corresponding to
_ 1
o= 2mRC

(5-19)

If a bandpass transformation is performed, the circuit of Figure 5-5b results, where
1

= @ (5—11)
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10 Lg = 30448 H L, =2.9943 H
YL ° Y o

150 Q 1211 mH 1191 mH

R
[

C3=09260 F Cy=03156 F 20

(a)

01637 uF 0.0558 ufF 300 Q

[

(b)
1500 1241 mH 840 pF 11.91 mH 85]2[ oF
17 l
01637 uF ig-os OOSSgT Le:..s 300 O
© '

FIGURE 5-4 The bandpass filter of Example 5-3: (a) normalized low-pass filter; (b) scaled low-pass fil-
ter; and (c) transformed bandpass filter.

The center frequency is f;, and the 3-dB bandwidth is equal to f,. The bandpass Q is given
by

o o
= =L = yRC (5-20)
pr BW3 dB fc OR
R
C
(2)
R R
O
wlQp wlQ
O

© (d)

FIGURE 5-5 The single tuned circuit: (a) RC low-pass circuit; (b) result of bandpass transforma-
tion; (c) representation of coil losses; (d) equivalent circuit at resonance.
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Since the magnitudes of the capacitive and inductive susceptances are equal at reso-
nance by definition, we can substitute 1/w,L for w,C in Equation (5-20) and obtain

0, = X (5-21)

wyL

The element R may be a single resistor as in Figure 5-5b or the parallel combination of
both the input and output terminations if an output load resistor is also present.

The circuit of Figure 5-5b is somewhat ideal, since inductor losses are usually unavoid-
able. (The slight losses usually associated with the capacitor will be neglected.) If the induc-
tor Q is given as Q,, the inductor losses can be represented as a parallel resistor of wLQ,, as
shown in Figure 5-5¢. The effective Q of the circuit thus becomes

R
a)OLQL
Qeff = Ri (5—22)
w,L L
As a result, the effective circuit Q is somewhat less than the values computed by
Equations (5-20) or (5-21). To compensate for the effect of finite inductor Q, the design Q
should be somewhat higher. This value can be found from

Q _ chfQL
¢ 0, = O
At a resonance, the equivalent circuit is represented by the resistive voltage divider of

Figure 5-5d, since the reactive elements cancel. The insertion loss at f; can be determined
by the expression

(5-23)

Ly = 20 log(l + kl 1> (5-24)

where k = Q,/Q., and can be obtained directly from the curve of Figure 5-6. Clearly the
insertion loss increases dramatically as the inductor Q approaches the required effective Q
of the circuit.

The frequency response of a single tuned circuit is expressed by

1+ < BW, )2 (5-25)
BW; g
where BW_ is the bandwidth of interest, and BWj; g is the 3-dB bandwidth. The response

characteristics are identical to an n = 1 Butterworth, so the attenuation curves of Figure 2-34
can be applied using BW ,/BW; ,; as the normalized frequency in radians per second.

The phase shift is given by
2Af
6 = tan "(7) (5-26)
BW; 45

where Afis the frequency deviation from f;. The output phase shift lags by 45° at the upper
3-dB frequency, and leads by 45° at the lower 3-dB frequency. At DC and infinity, the
phase shift reaches +90° and —90°, respectively. Equation (5-26) is plotted in Figure 5-7.

The group delay can be estimated by the slope of the phase shift at f;, and results in the
approximation

Ag = 10log

_ 318
BW3dB

T, (5-27)
where BW; jp is the 3-dB bandwidth in hertz and 7, is the resulting group delay in
milliseconds.
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FIGURE 5-7 Phase shift versus frequency.
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Example 5-4 Design of a Bandpass Filter Using a Parallel Tuned Circuit

Required:

An LC bandpass filter
A center frequency of 10 kHz
3 dB at =100 Hz (9.9 kHz, 10.1 kHz)
15-dB minimum at =1 kHz (9 kHz, 11 kHz)
Inductor Q, = 200
R, =R, =6kQ
Result:

(a) Convert to the geometrically symmetrical bandpass specification. Since the band-
pass Q is much greater than 10, the specified arithmetically symmetrical frequen-
cies are used to determine the following design requirements:

f, =10 kHz

BW, 45 = 200 Hz
BW,, 5 = 2000 Hz

(b) Compute the bandpass steepness factor.

stopband bandwidth
P _ 2000 _ 10 (2-19)

s 7 passband bandwidth ~ 200

Figure 2-34 indicates that a single tuned circuit (n = 1) provides more than 15 dB
of attenuation within a bandwidth ratio of 10:1.

(c) Calculate the design Q to obtain a Q. equal to f,/BW; ;; = 50, considering the
inductor Q, of 200.

0, = QL _ 50 X 200
470, = Q200 — 50

(d) Since the source and load are both of 6 k{), the total resistive loading on the tuned
circuit is the parallel combination of both terminations—thus, R = 3 k(). The
design Q can now be used in Equation (5-20) to compute C.

Oy 66.7

== = 0.354 uF 5-20
oR 628 X 10 X 10° X 3000 “ (5-20)

= 66.7 (5-23)

The inductance is given by Equation (5-11).

1 1
L=—-= =716 pH 511
wC (27 X 10kHz)> X 3.54 X 10~ H (-1

The resulting circuit is shown in Figure 5-8a, which has the frequency response of
Figure 5-8b. See Section 8.1 for a more practical implementation using a tapped

inductor.
(e) The circuit insertion loss can be calculated from
ILg = 20 log(l + 7 i 1) = 201ogl.333 = 2.5dB (5-24)
Q. 200
where k= =" =4
Qeff 50

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2006 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.



BANDPASS FILTERS

BANDPASS FILTERS 179

0 dB

—3 dB
6 kQ
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—-20 dB
1
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(a) (b)

FIGURE 5-8 The tuned circuit of Example 5-4: (a) circuit; and (b) frequency response.

The low-pass to bandpass transformation illustrated in Figure 5-5 can also be examined
from a pole-zero perspective. The RC low-pass filter has a single real pole at 1/RC, as
shown in Figure 5-9a, and a zero at infinity. The bandpass transformation results in a pair
of complex poles and zeros at the origin and infinity, as illustrated in Figure 5-9b. The
radial distance from the origin to the pole is 1/(LC)"?, corresponding to wy, the resonant fre-
quency. The Q can be expressed by

)

0=5, (5-28)

where «, the real part, is 1/2RC. The transfer function of the circuit of Figure 5-95 becomes

N
%

Q

At w,, the impedance of the parallel resonant circuit is a maximum and is purely resis-
tive, resulting in zero phase shift. If the Q is much less than 10, these effects do not both
occur at precisely the same frequency. Series losses of the inductor will also displace the
zero from the origin onto the negative real axis.

The Series Tuned Circuit. The losses of an inductor can be conveniently represented
by a series resistor determined by

T(s) =
sz +

(5-29)

2
s T wp

wL

Rcoi] = E (5—30)
If we form a series resonant circuit and include the source and load resistors, we obtain
the circuit of Figure 5-10. Equations (5-24) through (5-27) for insertion loss, frequency
response, phase shift, and the group delay of the parallel tuned circuit apply since the two

circuits are duals of each other. The inductance is calculated from

R, + R,

L=—>: = (5-31)

4-8)
0 pr 0,
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FIGURE 5-9 The bandpass transformation: (a) the low-pass circuit; and
(b) the bandpass circuit.

where Qy, is the required Q, and Q, is the inductor Q. The capacitance is given by

1
=— 5-12
¢ Wil (5-12)

Example 5-5 Design of a Bandpass Filter using a Series Tuned Circuit
Required:

A series tuned circuit
A center frequency of 100 kHz
A 3-dB bandwidth of 2 kHz

€
-

RS L

[}
~
o

FIGURE 5-10 The series resonant circuit.
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R, =R, =100 Q
Inductor Q of 400
Result:
(a) Compute the bandpass Q.
Jo 100 kHz
Oy = BW, K 50 (2-16)
(b) Calculate the element values, using
R. + R
L= 1 L1 = 20(1) = 18.2 mH (5-31)
P X S~ . -~
"’O(pr QL) 2m 1o (50 400)
C= - 139 pF (5-12)
3L P

The circuit is shown in Figure 5-11.

The reader may recall from AC circuit theory that one of the effects of series resonance
is a buildup of voltage across both reactive elements. The voltage across either reactive ele-
ment at resonance is equal to Q times the input voltage and may be excessively high, caus-
ing inductor saturation or capacitor breakdown. In addition, the L/C ratio becomes large as
the bandwidth is reduced and will result in impractical element values where high Qs are
required. As a result, series resonant circuits are less desirable than parallel tuned circuits.

Synchronously Tuned Filters. Tuned circuits can be cascaded to obtain bandpass filters
of a higher complexity. Each stage must be isolated from the previous section. If all circuits
are tuned to the same frequency, a synchronously tuned filter is obtained. The characteris-
tics of synchronously tuned bandpass filters are discussed in Section 2.8, and the normalized
frequency response is illustrated by the curves of Figure 2-77. The design Q of each section
was given by

Qseclion = Qoverall v 21/n -1 (2'45)

where Q... 18 defined by the ratio f,/BW, 4, of the composite filter. The individual cir-
cuits may be of either the series or the parallel resonant type.

Synchronously tuned filters are the simplest approximation to a bandpass response. Since
all stages are identical and tuned to the same frequency, they are simple to construct and easy
to align. The Q requirement of each individual section is less than the overall Q, whereas the
opposite is true for conventional bandpass filters. The transient behavior exhibits no over-
shoot or ringing. On the other hand, the selectivity is extremely poor. To obtain a particular

100 Q 182 mH 139 PF

100 Q

O

FIGURE 5-11 The series tuned circuit of Example 5-5.
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attenuation for a given steepness factor A, many more stages are required than for the other

filter types. In addition, each section must be isolated from the previous section, so interstage

amplifiers are required. The disadvantages generally outweigh the advantages, thus synchro-

nously tuned filters are usually restricted to special applications such as IF and RF amplifiers.
Example 5-6 Design of a Synchronously Tuned Bandpass Filter

Required:
A synchronously tuned bandpass filter
A center frequency of 455 kHz
3dB at =5 kHz
30-dB minimum at £35 kHz
An inductor Q of 400

Result:
(a) Compute the bandpass steepness factor.

_ stopband bandwidth 70 kHz
s passband bandwidth ~ 10kHz

7 (2-19)

The curves of Figure 2-77 indicate that a third-order (n = 3) synchronously tuned
filter satisfies the attenuation requirement.

(b) Three sections are required which are all tuned to 455 kHz and have identical Q.
To compute the Q of the individual sections, first calculate the overall Q, which is
given by

0 = Jo _ 455kHz
" BW,,  10kHz

=455 (2-16)

The section Qs can be found from
Oection = Qoveran V2" — 1 = 455V21% — 1 =232 (2-48)

(c) The tuned circuits can now be designed using either a series or parallel realization.
Let us choose a parallel tuned circuit configuration using a single-source resistor of
10 k€ and a high-impedance termination. Since an effective circuit Q of 23.2 is
desired and the inductor Q is 400, the design Q is calculated from

Q@1 232 X 400

Q= 0, — 0, ~ 400 — 232 ~ 246 (5-23)
The inductance is then given by
R 10 X 10°
L= = = 142 pH 5-21
®,Q,,  2m455 X 10° X 24.6 H 62D
The resonating capacitor can be obtained from
1
C=—-=2862pF 5-12
oL = 862P (5-12)

The final circuit is shown in Figure 5-12 utilizing buffer amplifiers to isolate the three
sections.
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Out

142 uH 862 pF

142 uH 862 pF

FIGURE 5-12  The synchronously tuned filter of Example 5-6.

Narrowband Coupled Resonators. Narrowband bandpass filters can be designed by using
coupling techniques where parallel tuned circuits are interconnected by coupling elements
such as inductors or capacitors. Figure 5-13 illustrates some typical configurations.

Coupled resonator configurations are desirable for narrowband filters having bandpass
Qs of 10 or more. The values are generally more practical than the elements obtained by
the low-pass to bandpass transformation, especially for very high QOs. The tuning is also
simpler since it turns out that all nodes are resonated to the same frequency. Of the three
configurations shown in Figure 5-13, the capacitive coupled configuration is the most
desirable from the standpoint of economy and ease or manufacture.

The theoretical justification for the design method is based on the assumption that the
coupling elements have a constant impedance with frequency. This assumption is approx-
imately accurate over narrow bandwidths. At DC, the coupling capacitors will introduce

Rs

I |

()

D
T

FIGURE 5-13 Coupled resonators: (a) inductive coupling; (b) capacitive coupling; and (¢) mag-
netic coupling.
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Node 1 N_lJe 2 Node n

Rs Ci2 Ces Cin=1n

L

FIGURE 5-14 A general form of a capacitive coupled resonator filter.

Cy Ly C2 3Lz

additional response zeros. This causes the frequency response to be increasingly unsym-
metrical both geometrically and arithmetically as we deviate from the center frequency.
The response shape will be somewhat steeper on the low-frequency side of the passband,
however.

The general form of a capacitive coupled resonator filter is shown in Figure 5-14. An
nth-order filter requires n parallel tuned circuits and contains n nodes. Tables 5-3 through
5-12 present in tabular form g and k parameters for all-pole filters. These parameters are
used to generate the component values for filters having the form shown in Figure 5-14. For
each network, a g, and g, is given that corresponds to the first and last resonant circuit. The
k parameters are given in terms of k,,, k,;, and so on, and are related to the coupling capac-
itor shown in Figure 5-14. The design method proceeds as follows:

1. Compute the desired filter’s passband Q, which was given by

o
%o = BW, 4

(2-16)

2. Determine the ¢’s and k’s from the tables corresponding to the chosen filter type and the
order of complexity n. Denormalize these coefficients as follows:

0, = 0Oy, X q, (5-32)
0, = O, X g, (5-33)
k.\/\'
K. = — 5-34
v =0, (5-34)
3. Choose a convenient inductance value L. The source and load terminations are found
from
R, = w,LO, (5-35)
and R, = w,LQ, (5-36)

4. The total nodal capacitance is determined by

Cioge = L (5-37)

node w%L

The coupling capacitors are then computed from

c,=k,C

node

(5-38)
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TABLE 5-3 Butterworth Capacitive Coupled Resonators

n a4 an kyy ky, ks kys ks key kyg
2 1.414 1.414 0.707

3 1.000 1.000 0.707 0.707

4 0.765 0.765 0.841 0.541 0.841

5 0.618 0.618 1.000 0.556 0.556 1.000

6 0.518 0.518 1.169 0.605 0.518 0.605 1.169

7 0.445 0.445 1.342 0.667 0.527 0.527 0.667 1.342

8 0.390 0.390 1.519 0.736 0.554 0.510 0.554 0.736 1.519

TABLE 5-4 0.01-dB Chebyshev Capacitive Coupled Resonators

n q 4y kyy kys ksy kys ks kez kg
2 1.483 1.483 0.708

3 1.181 1.181 0.682 0.682

4 1.046 1.046 0.737 0.541 0.737

5 0.977 0.977 0.780 0.540 0.540 0.780

6 0.937 0.937 0.809 0.550 0.518 0.550 0.809

7 0.913 0.913 0.829 0.560 0.517 0.517 0.560 0.829

8 0.897 0.897 0.843 0.567 0.520 0.510 0.520 0.567 0.843

TABLE 5-5 0.1-dB Chebyshev Capacitive Coupled Resonators

=

9 qn ki kys kyy kys ksg ke kg

1.638 1.638 0.711

1.433 1.433 0.662 0.662

1.345 1.345 0.685 0.542 0.685

1.301 1.301 0.703 0.536 0.536 0.703

1.277 1.277 0.715 0.539 0.518 0.539 0.715

1.262 1.262 0.722 0.542 0.516 0.516 0.542 0.722

1.251 1.251 0.728 0.545 0.516 0.510 0.516 0.545 0.728

[« BEN I NV RN NS )

TABLE 5-6 0.5-dB Chebyshev Capacitive Coupled Resonators

n 9, 4 ki kyy ks, kys ksg ke kag
2 1.950 1.950 0.723

3 1.864 1.864 0.647 0.647

4 1.826 1.826 0.648 0.545 0.648

5 1.807 1.807 0.652 0.534 0.534 0.652

6 1.796 1.796 0.655 0.533 0.519 0.533 0.655

7 1.790 1.790 0.657 0.533 0.516 0.516 0.533 0.657

8 1.785 1.785 0.658 0.533 0.515 0.511 0.515 0.533 0.658
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TABLE 5-7 1-dB Chebyshev Capacitive Coupled Resonators

n q, an ki Ky ks kys ksg kez
2 2.210 2.210 0.739

3 2.210 2.210 0.645 0.645

4 2.210 2.210 0.638 0.546 0.638

5 2.210 2.210 0.633 0.535 0.538 0.633

6 2.250 2.250 0.631 0.531 0.510 0.531 0.531

7 2.250 2.250 0.631 0.530 0.517 0.517 0.530 0.631

TABLE 5-8 Bessel Capacitive Coupled Resonators

=

91 q, ki ks ks, kys ksg ke kg

0.5755 0.148 0.900

0.337 2.203 1.748 0.684

0.233 2.240 2.530 1.175 0.644

0.394 0.275 1.910 0.750 0.650 1.987

0.415 0.187 2.000 0.811 0.601 1.253 3.038

0.187 0.242 3.325 1.660 1.293 0.695 0.674 2.203

0.139 0.242 4.284 2.079 1.484 1.246 0.678 0.697 2.286

0NN kAW

TABLE 5-9 Linear Phase with Equiripple Error of 0.05° Capacitive Coupled Resonators

N

9 qy kyy ks ks, kys ksg ke kag

0.648 2.109 0.856

0.433 2.254 1.489 0.652

0.493 0.718 1.632 0.718 0.739

0.547 0.446 1.800 0.848 0.584 1.372

0.397 0.468 1.993 1.379 0.683 0.661 1.553

0.316 0.484 2.490 1.442 1.446 0.927 0.579 1.260

0.335 0.363 2.585 1.484 1.602 1.160 0.596 0.868 1.733

[ =B B Y

TABLE 5-10 Linear Phase with Equiripple Error of 0.5° Capacitive Coupled Resonators

n q, qn ki kyy ks, kys ksg ke kg
2 0.825 1.980 0.783

3 0.553 2.425 1.330 0.635

4 0.581 1.026 1.575 0.797 0.656

5 0.664 0.611 1.779 0.919 0.576 1.162

6 0.552 0.586 1.874 1.355 0.641 0.721 1.429

7 0.401 0.688 2.324 1.394 1.500 1.079 0.590 1.045

8 0.415 0.563 2.410 1.470 1.527 1.409 0.659 0.755 1.335
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TABLE 5-11 Transitional Gaussian to 6-dB Capacitive Coupled Resonators

S

9 qn ki kys kyy kys ksg kg7 kag

0.404 2.338 1.662 0.691

0.570 0914 1.623 0.798 0.682

0.891 0.670 1.418 0.864 0.553 1.046

0.883 0.752 1.172 1.029 0.595 0.605 1.094

0.736 0.930 1.130 0.955 0.884 0.534 0.633 1.104

0.738 0.948 1.124 0.866 0.922 0.708 0.501 0.752 1.089

[ RN e NV N SN V)

TABLE 5-12 Transitional Gaussian to 12-dB Capacitive Coupled Resonators

N

91 I ki kys ks, kys ks ke kag

0.415 2.345 1.631 0.686

0.419 0.766 1.989 0.833 0.740

0.534 0.503 2.085 0.976 0.605 1.333

0.543 0.558 1.839 1.442 0.686 0.707 1.468

0.492 0.665 1.708 1.440 1.181 0.611 0.781 1.541

0.549 0.640 1.586 1.262 1.296 0.808 0.569 1.023 1.504

[ BN I NNV, I SN OV}

5. The total capacity connected to each node must be equal to C, .. Therefore, the shunt
capacitors of the parallel tuned circuits are equal to the total nodal capacitance C,

node?
minus the values of the coupling capacitors connected to that node. For example

C=Cise — Cp2
C, = Choae = Cip = Cy3
C; = Choge = C7 — G

Each node is tuned to f; with the adjacent nodes shorted to ground so that the coupling
capacitors connected to that node are placed in parallel across the tuned circuit.

The completed filter may require impedance scaling so that the source and load termi-
nating requirements are met. In addition, some of the impedance transformations discussed
in Chapter 8 may have to be applied.

The k and g values tabulated in Tables 5-3 through 5-12 are based on infinite inductor Q.
In reality, satisfactory results will be obtained for inductor Qs several times higher than Q, ;.
(bandpass), determined by Equation (5-17) in conjunction with Figure 3-8 which shows the
minimum theoretical low-pass Qs.

Example 5-7 Design of a Capacitive Coupled Resonator Bandpass Filter

Required:

A bandpass filter

Center frequency of 100 kHz
3 dB at 2.5 kHz

35-dB minimum at =12.5 kHz

Constant delay over the passband
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Result:

(a) Since a constant delay is required, a Bessel filter type will be chosen. The low-pass
constant delay properties will undergo a minimum of distortion for the bandpass
case since the bandwidth is relatively narrow—that is, the bandpass Q is high.
Because the bandwidth is narrow, we can treat the requirements on an arithmeti-
cally symmetrical basis.

The bandpass steepness factor is given by

__ stopband bandwidth 25 kHz
s~ passband bandwidth ~ 5 kHz

=5 (2-19)

The frequency-response curves of Figure 2-56 indicate that an n = 4 Bessel filter
provides over 35 dB of attenuation at 5 rad/s. A capacitive coupled resonator con-
figuration will be used for the implementation.

(b) The g and k parameters for a Bessel filter corresponding to n = 4 are found in
Table 5-8 and are as follows:
q, = 0.233
q, = 2.240
ki, = 2.530
kyy = 1.175
ky, = 0.644

To denormalize these values, divide each k by the bandpass Q and multiply each ¢
by the same factor as follows:

Oy, = B\{‘st = % =20 (2-16)
The resulting values are
0, = 0y, X q; =20 X 0.233 = 4.66 (5-32)
Q,=4438
K, = *a = 2330 _ 0.1265 (5-34)
Oy 20
K,; = 0.05875
K,, = 0.0322

(¢) Let’s choose an inductance of L = 2.5 mH. The source and load terminations are

R, = 0,LQ, = 6.28 X 10° X 2.5 X 1073 X 4.66 = 7.32 k() (5-35)
and R, = w,LQ, = 70.37 k() (5-36)
where w, = 27f;
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(d) The total nodal capacitance is determined by

1

c. . = A 1013 pF (5-37)

node

The coupling capacitors can now be calculated, using

Cp, = Kyy Cyoge = 0.1265 X 1.013 X 10~ = 128.1 pF (5-38)
C23 = K23 Cm)de =595 pF
Cyy = K3y Cppg. = 32.6 pF

The shunt capacitors are determined from

C, =C, e — C, = 884.9 pF

C, = Choge = Cpp — €3 = 8254 pF
C3 = Cnode - C23 - C34 = 9209 pF
C4 = Cnode - C34 = 980.4 pF

The final circuit is shown in Figure 5-15.

Predistorted Bandpass Filters. The inductor Q requirements of the bandpass filters are
higher than those of low-pass filters since the minimum theoretical branch Q is given by

O, (bandpass) = Q. (low-pass) X O, (5-17)

where Q) = fo/BWj 5. In the cases where the filter required is extremely narrow, a branch
O many times higher than the minimum theoretical Q may be difficult to obtain. Predistorted
bandpass filters can then be used so that exact theoretical results can be obtained with rea-
sonable branch Qs.

Predistorted bandpass filters can be obtained from the normalized predistorted low-pass
filters given in Chapter 11 by the conventional bandpass transformation. The low-pass fil-
ters must be of the uniform dissipation type since the lossy-L networks would be trans-
formed to a bandpass filter having losses in the series branches only.

The uniform dissipation networks are tabulated for different values of dissipation fac-
tor d. These values relate to the required inductor Q by the relationship

Oy,
0=, (5-39)
where Qy,, = f//BW; 4p.
1281 pF 59.5 pF 32.6 pF

7.32 kQ

L . Lo
[ l ) _[_
25 mH 72037

8254 pF 325 mH ——9209 pF 325 mH e
_[9804 oF

1 1 1

FIGURE 5-15 The capacitive coupled resonator filter of Example 5-7.

8849 pF 42.5 mH
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_ . . 0
(b)

FIGURE 5-16 The location of losses in uniformly predistorted filters: (a) a low-pass filter; and (b) a band-
pass filter.

The losses of a predistorted low-pass filter having uniform dissipation are evenly dis-
tributed and occur as both series losses in the inductors and shunt losses across the capaci-
tors. The equivalent circuit of the filter is shown in Figure 5-16a. The inductor losses were
previously given by

oL
R, = 0 (3-2)
and the capacitor losses were defined by
_ 0
R. = oC (3-3)

When the circuit is transformed to a bandpass filter, the losses are still required to be
distributed in series with the series branches and in parallel with the shunt branches, as
shown in Figure 5-16b. In reality, the capacitor losses are minimal and the inductor losses
occur in series with the inductive elements in both the series and shunt branches. Therefore,
as a narrowband approximation, the losses may be distributed between the capacitors and
inductors in an arbitrary manner. The only restriction is that the combination of inductor
and capacitor losses in each branch results in a total branch Q equal to the value computed
by Equation (5-39). The combined Q of a lossy inductor and a lossy capacitor in a resonant
circuit is given by

00,
=0, + 0,

where Q; is the total branch Q, Q, is the inductor Q, and Q. is the Q of the capacitor.

The predistorted networks tabulated in Chapter 11 require an infinite termination on one
side. In practice, if the resistance used to approximate the infinite termination is large com-
pared with the source termination, satisfactory results will be obtained. If the dual config-
uration is used, which ideally requires a zero impedance source, the source impedance
should be much less than the load termination.

It is usually difficult to obtain inductor Qs precisely equal to the values computed from
Equation (5-39). A Q accuracy within 5 or 10 percent at f; is usually sufficient. If greater

(5-40)
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accuracy is required, an inductor Q higher than the calculated value is used. The Q is then
degraded to the exact required value by adding resistors.

Example 5-8 Design of a Predistorted LC Bandpass Filter

Required:

A bandpass filter

Center frequency of 10 kHz

3 dB at =250 Hz

60-dB minimum at =750 Hz

R, =100 Q R, = 10 k) minimum
An available inductor Q of 225

Result:

(a) Since the filter is narrow in bandwidth, the requirement is treated in its arithmeti-
cally symmetrical form. The bandpass-steepness factor is obtained from

__ stopband bandwidth 1500 Hz
s 7 passband bandwidth ~ 500 Hz

=3 (2-19)

The curves of Figure 2-43 indicate that a fifth-order (n = 5) 0.25-dB Chebyshev fil-
ter will meet these requirements. A predistorted design will be used. The corre-
sponding normalized low-pass filters are found in Table 11-33.

(b) The specified inductor Q can be used to compute the required d of the low-pass fil-
ter as follows:
Qw _ 20
=0, 25" 0.0889 (5-39)

where O, = fo/BW; 4. The circuit corresponding to n = 5 and d = 0.0919 will be
selected since this d is sufficiently close to the computed value. The schematic is
shown in Figure 5-17a.

(c) Denormalize the low-pass filter using a frequency-scaling factor (FSF) of 27f, or
3140, where f, = 500 Hz, the required bandwidth of the bandpass filter, and an
impedance-scaling factor Z of 100.

. C 10397
G = BSExZ 3140 x 100 ~ 209 BF (2-10)
C, = 7.014 uF
C, = 3.660 uF
, _LXZ _ 18181 X 100 _
and R 3140 = 57.87 mH (2-9)
L, = 55.79 mH

The denormalized low-pass filter is shown in Figure 5-17b, where the termina-
tion has been scaled to 100 ). The filter has also been turned end for end since
the high-impedance termination is required at the output and the 100-() source
at the input.
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(d) To transform the circuit into a bandpass filter, resonate each capacitor with an
inductor in parallel, and each inductor with a series capacitor using a resonant fre-
quency of f, = 10 kHz. The parallel inductor is computed from

1

= -11
w()C G-1h

and the series capacitor is calculated by

C = L (5-12)

wOL

where both formulas are forms of the general relationship for resonance:
®3LC = 1.The resulting bandpass filter is given in Figure 5-17¢. The large spread
of values can be reduced by applying some of the techniques later discussed in
Chapter 8.

Elliptic-Function Bandpass Filters. Elliptic-function low-pass filters were clearly
shown to be far superior to the other filter types in terms of achieving a required attenua-
tion within a given frequency ratio. This superiority is mainly the result of the presence of
transmission zeros beginning just outside the passband.

Lp=18181H Lq:17528H
™ YL o

IT l Cy= 10397 F
]

C3:22035F Tc.;,: 11497 F 210
(a)
100 Q 5579 mH_ 5787 mH
:Ifseso uF :‘[E 014 uF 1,3,309 uF ©
100 & 5579 mi 4540 pF 5787 mH 4377{ pF
-
10 k
7.014 uF 3309 ,LF‘L om&
69.21 uH 3611 uH 76,55 uH
Q=225
()

FIGURE 5-17 The predistorted bandpass filter of Example 5-8: (a) normalized low-pass filter; (b) fre-
quency- and impedance-scaled network; and (c) resulting bandpass filter.
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Elliptic-function LC low-pass filters have been extensively tabulated by Saal and Ulbrich
and by Zverev (see the Bibliography). A program called Filter Solutions is included on the
CD-ROM and allows the design of elliptic-function LC filters (up to n = 10). These net-
works can be transformed into bandpass filters in the same manner as the all-pole filter types.
The elliptic-function bandpass filters will then exhibit the same superiority over the all-pole
types as their low-pass counterparts.

When an elliptic-function low-pass filter is transformed into a bandpass filter, each low-
pass transmission zero is converted into a pair of zeros, one above and one below the passband,
and are geometrically related to the center frequency. (For the purposes of this discussion, neg-
ative zeros will be disregarded.) The low-pass zeros are directly determined by the resonances
of the parallel tuned circuits in the series branches. When each series branch containing a par-
allel tuned circuit is modified by the bandpass transformation, two parallel branch resonances
are introduced corresponding to the upper and lower zeros.

A sixth-order elliptic-function low-pass filter structure is shown in Figure 5-18a. After
frequency- and impedance-scaling the low-pass values, we can make a bandpass transfor-
mation by resonating each inductor with a series capacitor, and each capacitor with a par-
allel inductor, where the resonant frequency is f;, the filter center frequency. The circuit of
Figure 5-18b results. The configuration obtained in branches 2 and 4 corresponds to a type
III network from Table 5-2.

The type III network realizes two parallel resonances corresponding to a geometrically
related pair of transmission zeros above and below the passband. The circuit configuration
itself is not very desirable. The elements corresponding to both parallel resonances are not
distinctly isolated. Each resonance is determined by the interaction of a number of ele-
ments, so tuning is made difficult. Also, for very narrow filters, the values may become
unreasonable. Fortunately, an alternate circuit exists that provides a more practical rela-
tionship between the coils and capacitors. The two equivalent configurations are shown in
Figure 5-19. The alternate configuration utilizes two parallel tuned circuits where each con-
dition of parallel resonance directly corresponds to a transmission zero.

YV - ’ Y4 l——o

1 1 I .

1 2 3 4 5 6
(®)

FIGURE 5-18 The low-pass to bandpass transformation of an elliptic-function filter:
(a) n = 6 low-pass filter; and (b) transformed bandpass configuration.
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FIGURE 5-19 Equivalent circuit of a type III network.

The type III network of Figure 5-19 is shown with reciprocal element values. These
result when we normalize the bandpass filter to a center frequency of 1 rad/s. Since the gen-
eral equation for resonance w3LC = 1 reduces to LC = 1 at w, = 1, the resonant elements
become reciprocals of each other.

The reason for this normalization is to greatly simplify the equations for the transfor-
mation shown in Figure 5-19. Otherwise, the equations relating the two circuits would be
significantly more complex. Therefore, elliptic function bandpass filters are first designed,
normalized, and then scaled to the required center frequency and impedance.

To obtain the normalized bandpass filter, first multiply all L and C values of the nor-
malized low-pass filter by Q,,,, which is equal to f,/BW, where BW is the passband band-
width. The network can then be transformed directly into a normalized bandpass filter by
resonating each inductor with a series capacitor, and each capacitor with a parallel induc-
tor. The resonant elements are merely reciprocals of each other since w, = 1.

The transformation of Figure 5-19 can now be performed. First calculate

-1+ + + 5-41
B an,c, " Narze: T Lq (5-41)

The values are then obtained from

L,= 5-42

“TCE D 642

L, = BL, (5-43)

1

C, =5 5-44

“ Lb ( )

C, = LL (5-45)

The resonant frequencies are given by

Q.,.=Vs (5-46)

and Q., = QL (5-47)

After the transformation of Figure 5-19 is made wherever applicable, the normalized
bandpass filter is scaled to the required center frequency and impedance level by multiply-
ing all inductors by Z/FSF and dividing all capacitors by Z X FSF. The frequency-scaling
factor in this case is equal to w, (w, = 27f;), where f; is the desired center frequency of the
filter. The resonant frequencies in hertz can be found by multiplying all normalized radian
resonant frequencies by f;.
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The design of an elliptic-function bandpass filter is demonstrated by the following
example.
Example 5-9 Designing an LC Elliptic Function Bandpass Filter
Required:
A bandpass filter
1-dB maximum variation from 15 to 20 kHz

50-dB minimum below 14.06 kHz and above 23 kHz
R, =R, =10kQ

Result:

(a) Convert to a geometrically symmetrical bandpass requirement:
First, calculate the geometric center frequency.

fo=Vff, = V15 x20 X 10° = 17.32kHz (2-14)

Compute the corresponding geometric frequency for each stopband frequency given,
using the relationship

=18 (2-18)
h h L=h
14.06 kHz 21.34 kHz 7.28 kHz
13.04 kHz 23.00 kHz 9.96 kHz

The first pair of frequencies has the lesser separation and therefore represents the
more severe requirement. Thus, it will be retained. The geometrically symmetrical
requirements can be summarized as

Jfo=17.32kHz
BW, s = 5kHz
BW,, s = 7.28 kHz
(b) Compute the bandpass steepness factor.

__ stopband bandwidth 728 kHz
s © passband bandwidth = 5 kHz

= 1.456 (2-19)

(c) Open Filter Solutions.
Check the Stop Band Freq box.
Enter .18 in the Pass Band Ripple(dB) box.
Enter 1 in Pass Band Freq box.
Enter 1.456 in the Stop Band Freq box.
Check the Frequency Scale Rad/Sec box.
Enter 1 for Source Res and Load Res.
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(d) Click the Set Order control button to open the second panel.
Enter 50 for the Stopband Attenuation (dB).
Click the Set Minimum Order button and then click Close.
6 Order is displayed on the main control panel.
Check the Even Order Mod box.

(e) Click the Circuits button.
Two schematics are presented. Select Passive Filter 1, shown in Figure 5-20a.

(f) The filter must now be converted to a normalized bandpass filter having a center
frequency of w, = 1. The bandpass Q is first computed from

_ S 1732kHz

O = BW = skHz 64

Multiply all inductance and capacitance values by Q,,. Then, transform the network
into a bandpass filter centered at w, = 1 by resonating each capacitor with a paral-
lel inductor and each inductor with a series capacitor. The resonating elements
introduced are simply the reciprocal values, as shown in Figure 5-205.

(g) The type III branches will now be transformed in accordance with Figure 5-19.
For the third branch

L,=4451H C,=1.199F

First, compute

1 1 1
=1+ + + = 1.5366 5-41
P aL,¢, " Narze: T L (5-41)

then
1
L,= % —-=03288H 5-42
“ e+ (5-42)
L,=BL, = 05052H (5-43)
C, = Lo 1.9793 F (5-44)
b
C, = LL = 3.0414F (5-45)
The resonant frequencies are
Q,,= VB =123% (5-46)
1
Q,., = = 0.8067 (5-47)
P,

For the fifth branch:
L, =443H C,=0.684F
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p 346.1 mF 4 197.5 mF L
[l Il
1T 1
1.500 R/S 1.890 RIS
T’IZBQ F T1.451 F T974.7 mF 1.000Q
(a)
4451H 1 4.43H 1
— F — F
1. 4.451 4.43
399H 599 — —
O {6— 1.199 F : 0.684 F
I¢ I¢
IX AN
Tl Tl
o 1
1Q 1Q
1@ 1.199 0.684 19
T |44esF 1 4 |so026F 1 5] |s376F
4.465 5.026 3.376
O O
(b)
]
399H 399 " 03288H 0.5052H 05292 H 0.9328 H

1.8897 F

1.9793 F

10 10
- —
1 3.376 F
4.465
O : : : O
1.000 1.000 1.000 1.000
1.2396 0.8067 1.3277 0.7532

©
FIGURE 5-20 The elliptic-function bandpass filter: (a) normalized low-pass filter; and (b) bandpass filter
normalized to w, = 1. An elliptic-function bandpass filter; (c) transformed type III branches; (d) final scaled
circuit; and (e) frequency response.

then
B =1.7627
L,=05292H
L,= 09328 H
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366.6 mH 30.21mH 46.42 mH 48.63 mH 85.67 mH

o—I

230.3pF

1819pF  2795pF 985.1pF  1736pF

10 kQ 10 kQ
- 20.58mH 18.28mH 27.22mH —
4103pF 4618pF 3102pF
O : : :
17.32kHz  17.32kHz 17.32kHz 17.32kHz
21.47kHz 13.97kHz 23.0kHz 13.05kHz
(d)
0.18 dB
| |
| 500kHz |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
! 7.28 kHz !
| |
I I
i 15.00 kHz 20.00 kHz
! I | |
! 1 14.06 kHz 21.34kHz | I
13.05 kHz 13.97 kHz 21.47kHz 23.0 kHz
(e)
FIGURE 5-20 (Continued)
C,=1072F
C, = 1.8897F
Q,, = 13277
O, =0.7532

0,q

The transformed filter is shown in Figure 5-20c. The resonant frequencies in radi-
ans per second are indicated below the schematic.
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(h) To complete the design, denormalize the filter to a center frequency (f;) of
17.32 kHz, and an impedance level of 10 k(). Multiply all inductors by Z/FSF and
divide all capacitors by Z X FSF, where Z = 10* and FSF = 27f; or 1.0882 X 10°.
The final filter is shown in Figure 5-20d. The resonant frequencies were obtained
by directed multiplication of the normalized resonant frequencies of Figure 5-20c¢
by the geometric center frequency f; of 17.32 kHz. The frequency response is
shown in Figure 5-20e.

5.2 ACTIVE BANDPASS FILTERS

When the separation between the upper and lower cutoff frequencies exceeds a ratio of
approximately 2, the bandpass filter is considered a wideband type. The specifications are
then separated into individual low-pass and high-pass requirements and met by a cascade
of active low-pass and high-pass filters.

Narrowband LC bandpass filters are usually designed by transforming a low-pass con-
figuration directly into the bandpass circuit. Unfortunately, no such circuit transformation
exists for active networks. The general approach involves transforming the low-pass trans-
fer function into a bandpass type. The bandpass poles and zeros are then implemented by a
cascade of bandpass filter sections.

Wideband Filters

When LC low-pass and high-pass filters were cascaded, care had to be taken to minimize ter-
minal impedance variations so that each filter maintained its individual response in the cas-
caded form. Active filters can be interconnected with no interaction because of the inherent
buffering of the operational amplifiers. The only exception occurs in the case of the elliptic-
function VCVS filters of sections 3.2 and 4.2 where the last sections are followed by an RC
network to provide the real poles. An amplifier must then be introduced for isolation.

Figure 5-21 shows two simple amplifier configurations which can be used after an active
elliptic function VCVS filter. The gain of the voltage follower is unity. The noninverting
amplifier has a gain equal to R,/R, + 1. The resistors R, and R, can have any convenient val-
ues since only their ratio is of significance.

Example 5-10 Designing a Wideband Active Bandpass Filter
Required:

An active bandpass filter
1-dB maximum variation from 3000 to 9000 Hz

Ra
Ry
b—O - ——0O0
n Out n Out
i it it it
(@) (b)

FIGURE 5-21 Isolation amplifiers: (a) voltage follower; and (b) noninvert-
ing amplifier.
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35-dB minimum below 1000 Hz and above 18,000 Hz
Gain of +20 dB

Result:

(a) Since the ratio of upper cutoff frequency to lower cutoff frequency is well in excess
of an octave, the design will be treated as a cascade of low-pass and high-pass fil-
ters. The frequency-response requirement can be restated as the following set of
individual low-pass and high-pass specifications:

High-pass filter: Low-pass filter:

1-dB maximum at 3000 Hz 1-dB maximum at 9000 Hz
35-dB minimum below 1000 Hz 35-dB minimum above 18,000 Hz

(b) To design the high-pass filter, first compute the high-pass steepness factor.

~

f. 3000 Hz
A= £, 1000Hz 3 2-13)

A normalized low-pass filter must now be chosen that makes the transition from
less than 1 dB to more than 35 dB within a frequency ratio of 3:1. An elliptic-
function type will be selected. The high-pass filter designed in Example 4-5
illustrates this process and will meet this requirement. The circuit is shown in
Figure 5-22a.

(c) The low-pass filter is now designed. The low-pass steepness factor is computed by

4 18000Hz -
s f " 9000Hz (2-11)

A low-pass filter must be selected that makes the transition from less than 1 dB to more
than 35 dB within a frequency ratio of 2:1. The curves of Figure 2-44 indicate that the
attenuation of a normalized 0.5-dB Chebyshev filter of a complexity of n = 5 is less
than 1 dB at 0.9 rad/s and more than 35 dB at 1.8 rad/s, which satisfies the require-
ments. The corresponding active filter is found in Table 11-39 and is shown in
Figure 5-22b.

To denormalize the low-pass circuit, first compute the FSF, which is given by

desired reference frequency
FSF =

existing reference frequency

2w X 9000 rad/s
= 09rads 62,830 2-1)

The filter is then denormalized by dividing all capacitors by Z X FSF and multi-
plying all resistors by Z, where Z is arbitrarily chosen at 10*. The denormalized cir-
cuit is shown in Figure 5-22c.

(d) To complete the design, the low-pass and high-pass filters are cascaded. Since the
real-pole RC network of the elliptic high-pass filter must be buffered and since a
gain of +20 dB is required, the noninverting amplifier of Figure 5-215 will be
used.

The finalized design is shown in Figure 5-22d, where the resistors have been rounded
off to standard 1-percent values.

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2006 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.



BANDPASS FILTERS

BANDPASS FILTERS 201

0.02 uF 'L 10 kQ 34.8 kQ

Out
1N Ormmeeg
4.75 kQ
()
C,=9.462 F
C,=6.842F
1] 10 Out
10 18] 10
In Icz=o.n44 F
C, =3317F T T C3=0.3033F 1
(b)
0.0151 uF
0.0109 pF
10k |10k Out
10k 10 k| 10 kQ
In 182 pF
:[_ 5280 pF I 483 pF =
©
I 162 kQ
0.02 uF 10kQ 348k | W
17.‘8AkﬂT 178 k= I -
vy - b — +
0.01 uF  0.01uF 1 0.01 uF
4.75 kQ
8.87 k& =
0.0151 uF
0.0109 uF
10 k] 10 kQ Out
10k 10k ]10KQ
182 pF
5280 pF == 483 pF I

I

I

T @

FIGURE 5-22 The wideband bandpass filter of Example 5-10: (a) the high-pass
filter of Example 4-5; (b) normalized low-pass filter; (c) denormalized low-pass fil-
ter; and (d) bandpass filter configuration.
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The Bandpass Transformation of Low-Pass Poles and Zeros. Active bandpass filters
are designed directly from a bandpass transfer function. To obtain the bandpass poles and
zeros from the low-pass transfer function, a low-pass-to-bandpass transformation must be
performed. It was shown in Section 5.1 how this transformation can be accomplished by
replacing the frequency variable by a new variable, which was given by

This substitution maps the low-pass frequency response into a bandpass magnitude
characteristic.

Two sets of bandpass poles are obtained from each low-pass complex pole pair. If the
low-pass pole is real, a single pair of complex poles results for the bandpass case. Also,
each pair of imaginary axis zeros is transformed into two pairs of conjugate zeros. This is
shown in Figure 5-23.

+jB +iB
X
LP ——BP
X
X
>+ +a
X
X
X
-iB -iB
(@)
+iB +iB
3
LP———=BP X
—_— =t +a
X
-iB —-iB
(b)
+iB +iB
3
LP———BP
[
- +0 +o
(o)
-iB -iB
©

FIGURE 5-23 A low-pass-to-bandpass transformation:
(a) low-pass complex pole pair; (b) low-pass real pole; and
(c) low-pass pair of imaginary zeros.
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Clearly, the total number of poles and zeros is doubled when the bandpass transforma-
tion is performed. However, it is conventional to disregard the conjugate bandpass poles
and zeros below the real axis. An n-pole low-pass filter is said to result in an nth-order
bandpass filter even though the bandpass transfer function is of the order 2n. An nth-order
active bandpass filter will then consist of n bandpass sections.

Each all-pole bandpass section has a second-order transfer function given by

Hs

wr

s2 + 0° + w?
where w, is equal to 27f,, the pole resonant frequency in radians per second, Q is the band-
pass section Q, and H is a gain constant.
If transmission zeros are required, the section transfer function will then take the form
H(s* + w?)
Is) = ——(@ (5-49)
2 r 2
o+ s+ w
Q r
where w,, is equal to 27f,, the frequency of the transmission zero in radians per second.
Active bandpass filters are designed by the following sequence of operations:

T(s) = (5-48)

1. Convert the bandpass specifications to a geometrically symmetrical requirement as
described in Section 2.1.

2. Calculate the bandpass steepness factor A; using Equation (2-19) and select a normal-
ized filter type from Chapter 2.

3. Look up the corresponding normalized poles (and zeros) from the tables of Chapter 11
or use the Filter Solutions program for elliptic function filters and transform these coor-
dinates into bandpass parameters.

4. Select the appropriate bandpass circuit configuration from the types presented in this
chapter and cascade the required number of sections.

It is convenient to specify each bandpass filter section in terms of its center frequency
and Q. Elliptic-function filters will require zeros. These parameters can be directly trans-
formed from the poles (and zeros) of the normalized low-pass transfer function. A numer-
ical procedure will be described for making this transformation.

First make the preliminary calculation

_ N

%% = Bw (2-16)

where f; is the geometric bandpass center frequency and BW is the passband bandwidth.
The bandpass transformation is made in the following manner.
Complex Poles. Complex poles occur in the tables of Chapter 11, having the form

where « is the real coordinate and (3 is the imaginary part.

When using the Filter Solutions program for the design of elliptic function filters, the
program provides the low-pass parameters Q and w,. These two parameters can be con-
verted into « and 3 by using
)

20
B= Vi — o
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Given a 3, Oy, and f;, the following series of calculations results in two sets of values
for Q and center frequencies which defines a pair of bandpass filter sections:

C=a*+p? (5-50)
2a

D=—"—"— 5-51
0, (5-51)
C

E=—+14 5-52
%, (52

G = VE? — 4D? (5-53)

_ |E+G )
0= Y (5-54)

aQ
M= -
0, (5-55)
W=M+ VM -1 (5-56)
_h
Ja = W (5-57)
fy = Wiy (5-58)

The two bandpass sections have resonant frequencies of f,, and f,, (in hertz), and iden-
tical Qs as given by Equation (5-54).

Real Poles. A normalized low-pass real pole having a real coordinate of magnitude
is transformed into a single bandpass section having a Q defined by

Oy
Q=4 (5-59)

The section is tuned to f;, the geometric center frequency of the filter.

Imaginary Zeros. Elliptic-function low-pass filters contain transmission zeros of the
form * jw,, as well as poles. These zeros must be transformed along with the poles when a
bandpass filter is required. The bandpass zeros can be obtained as follows:

2

%

H = +1 5-60

202, (5-60)

Z=VH+ VH* — 1 (5-61)
_Jo

foa =7 (5-62)

fep =ZX o (5-63)

A pair of imaginary bandpass zeros are obtained that occur atf,. , and f,, , (in hertz) from
each low-pass zero. ' '

Determining Section Gain. The gain of a single bandpass section at the filter geomet-
ric center frequency f; is given by

A

r

Ay = (5-64)
f ﬁ>2
2 22 IF
L+ <f, %

where A, is the section gain at its resonant frequency f,. The section gain will always be
less at f,, than at f, since the circuit is peaked to f,, except for transformed real poles
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where f, = f,. Equation (5-64) will then simplify to A, = A,. The composite filter gain
is determined by the product of the A, values of all the sections.
If the section Q is relatively high (Q > 10), Equation (5-64) can be simplified to

A
Ay= —— (5-65)

where Af is the frequency separation between f, and f,.
Example 5-11 Computing Bandpass Pole Locations and Section Gains

Required:

Determine the pole locations and section gains for a third-order Butterworth bandpass
filter having a geometric center frequency of 1000 Hz, a 3-dB bandwidth of 100 Hz,
and a midband gain of +30 dB.

Result:

(a) The normalized pole locations for an n = 3 Butterworth low-pass filter are obtained
from Table 11-1 and are

—0.500 = j0.8660

—1.000
To obtain the bandpass poles, first compute
fo 1000 Hz
0y, = =———=10 (2-16)
% BW, 100 Hz

The low-pass to bandpass pole transformation is performed as follows:

Complex pole:

a = 0500 B = 0.8660

C = a2 + B2 = 1.000000 (5-50)
D = 2% = 0100000 (5-51)
Ov,
C
E=—+4 = 4010000 (5-52)
02
G = VE? — 4D = 4.005010 (5-53)
[E+ G
= = 20.018754 54
0 e 0.01875 (5-54)
aQ
M = == = 1.000938 (5-55)
Ov
W=M+ VM?> — 1 = 1.044261 (5-56)
fo
fu =y = 9576 Hz (5-57)
£, = Wf, = 10443 Hz (5-58)
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Real pole:
a, = 1.0000
= % =10 5-59
0= = (5-59)

f. = f, = 1000 Hz

(b) Since a composite midband gain of +30 dB is required, let us distribute the gain
uniformly among the three sections. Therefore, A, = 3.162 for each section corre-
sponding to +10 dB.

The gain at section resonant frequency f, is obtained from the following form of

Equation (5-64):
ﬁ)z
A =Ap1+ 2(—0——
AN

The resulting values are

Section 1: f.,=957.6Hz
0 =20.02
A, =6.333
Section 2: f.= 10443 Hz
0 =20.02
A, =6.335
Section 3: /. =1000.0 Hz
Q = 10.00
A, =3.162

The block diagram of the realization is shown in Figure 5-24.

The calculations required for the bandpass pole transformation should be maintained
to more than four significant figures after the decimal point to obtain accurate results
since differences of close numbers are involved. Equations (5-55) and (5-56) are espe-
cially critical, so the value of M should be computed to five or six places after the deci-
mal point.

A, = 6.333 A, = 6335 A, = 3.162
InO—{ F, = 957.6 Hz [~ F, = 10443 Hz — F, = 1000.0 Hz —o0 Out
Q= 2002 Q=2002 Q= 1000

FIGURE 5-24 A block realization of Example 5-11.
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Sensitivity in Active Bandpass Circuits. Sensitivity defines the amount of change of a
dependent variable that results from the variation of an independent variable. Mathematically,
the sensitivity of y with respect to x is expressed as

dyly

= (5-66)

Sensitivity is used as a figure of merit to measure the change in a particular filter para-
meter, such as Q, or the resonant frequency for a given change in a component value.

Deviations of components from their nominal values occur because of the effects of
temperature, aging, humidity, and other environmental conditions in addition to errors due
to tolerances. These variations cause changes in parameters such as Q and the center fre-
quency from their design values.

As an example, let’s assume we are given the parameter S,% = —3 for a particular
circuit. This means that for a 1-percent increment of R,, the circuit Q will change 3 percent
in the opposite direction.

In addition to component value sensitivity, the operation of a filter is dependent on the
active elements as well. The Q and resonant frequency can be a function of amplifier open-
loop gain and phase shift, so the sensitivity to these active parameters is useful in deter-
mining an amplifier’s suitability for a particular design.

The Q sensitivity of a circuit is a good measure of its stability. With some circuits, the
Q can increase to infinity, which implies self-oscillation. Low Q sensitivity of a circuit usu-
ally indicates that the configuration will be practical from a stability point of view.

Sometimes the sensitivity is expressed as an equation instead of a numerical value, such
as ¢ = 22 This expression implies that the sensitivity of Q with respect to amplifier
gain A increases with Q2, so the circuit is not suitable for high Q realizations.

The frequency-sensitivity parameters of a circuit are useful in determining whether the
circuit will require resistive trimming and indicate which element should be made variable.
It should be mentioned that, in general, only resonant frequency is made adjustable when
the bandpass filter is sufficiently narrow. Q variations of 5 or 10 percent are usually tolera-
ble, whereas a comparable frequency error would be disastrous in narrow filters. However,
in the case of a state-variable realization, a Q-enhancement effect occurs that’s caused by
amplifier phase shift. The Q may increase very dramatically, so Q adjustment is usually
required in addition to resonant frequency.

All-Pole Bandpass Configurations
Multiple-Feedback Bandpass (MFBP). The circuit of Figure 5-25a realizes a band-

pass pole pair and is commonly referred to as a multiple-feedback bandpass (MFBP)

C C
|1 ||
1 11

R2 R2

Ry C Rig
In o—AAA——] In O—AAA—
Out

l‘ﬂ

L—O Out

Rip

(2 (®)

FIGURE 5-25 A multiple-feedback bandpass (MFBP) (Q < 20): (a) MFBP basic circuit; and (b) modi-
fied configuration.

H—A
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configuration. This circuit features a minimum number of components and a low sensitiv-
ity to component tolerances. The transfer function is given by

sCIR,

T =
) = 20T+ 20k, + UR R,

(5-67)

If we equate the coefficients of this transfer function with the general bandpass transfer
function of Equation (5-48), we can derive the following expressions for the element values:

_ 9
R, = 7 C (5-68)
R,
and R, = 107 (5-69)
where C is arbitrary.
The circuit gain at resonant frequency f, is given by
A, = 20? (5-70)

The open-loop gain of the operational amplifier at f, should be well in excess of 2Q? so
that the circuit performance is controlled mainly by the passive elements. This requirement
places a restriction on realizable Qs to values typically below 20, depending upon the ampli-
fier type and frequency range.

Extremely high gains occur for moderate Q values because of the Q* gain proportional-
ity. Thus, there will be a tendency for clipping at the amplifier output with moderate input
levels. Also, the circuit gain is fixed by the Q, which limits flexibility.

An alternate and preferred form of the circuit is shown in Figure 5-25b. The input resis-
tor R, has been split into two resistors, R,, and R,,, to form a voltage divider so that the
circuit gain can be controlled. The parallel combination of the two resistors is equal to R,
in order to retain the resonant frequency. The transfer function of the modified circuit is
given by

T(s) = SR,C (5-71)
' s?R,R,C? + s2R,.C + (1 + R, /R,,)
The values of R, and R, are computed from
R,
Ri =54 (5-72)
R,2
and R, = m (5-73)

where A, is the desired gain at resonant frequency £. and cannot exceed 2Q> The value of
R, is still computed from Equation (5-68).
The circuit sensitivities can be determined as follows:

Ar
$%.= 5L = 3 (5-74)
S9, = Sf, = 5(1 + A 20 (5-75)
Sk = Sk= —% (5-76)
1
8= (5-77)
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For Q%A >> 1, the resonant frequency can be directly controlled by R,, since Sﬁ'm
approaches ;. To use this result, let’s assume that the capacitors have 2-percent tolerances
and the resistors have a tolerance of 1 percent, which could result in a possible 3-percent
frequency error. If frequency adjustment is desired, R,, should be made variable over a
minimum resistance range of *6 percent. This would then permit a frequency adjustment
of *3 percent, since S}gm is equal to Y,. Resistor R,, should be composed of a fixed
resistor in series with a single-turn potentiometer to provide good resolution.

Adjustment of Q can be accomplished by making R, adjustable. However, this will
affect resonant frequency and in any event is not necessary for most filters if 1- or 2-percent
tolerance parts are used. The section gain can be varied by making R, , adjustable, but again
resonant frequency may be affected.

In conclusion, this circuit is highly recommended for low Q requirements. Although a large
spread in resistance values can occur and the Q is limited by amplifier gain, the circuit sim-
plicity, low element sensitivity, and ease of frequency adjustment make it highly desirable.

The following example demonstrates the design of a bandpass filter using the MFBP
configuration.

Example 5-12 Design of an Active All-Pole Bandpass Filter Using the MFBP
Configuration

Required:

Design an active bandpass filter having the following specifications:
A center frequency of 300 Hz

3dBat+10Hz

25-dB minimum at =40 Hz

Essentially zero overshoot to a 300-Hz carrier pulse step

A gain of =12 dB at 300 Hz

Result:

(a) Since the bandwidth is narrow, the requirement can be treated on an arithmetically
symmetrical basis. The bandpass steepness factor is given by

stopband bandwidth 80 Hz _ A 519
s * passband bandwidth ~ 20 Hz ~ (2-19)

The curves of Figures 2-69 and 2-74 indicate that an n = 3 transitional gaussian to
6-dB filter will meet the frequency- and step-response requirements.

(b) The pole locations for the corresponding normalized low-pass filter are found in
Table 11-50 and are as follows:

—0.9622 = j1.2214
—0.9776
First compute the bandpass Q:

0 = Jo _300Hz
" BW,4 20 Hz

=15 (2-16)

The low-pass poles are transformed to the bandpass form in the following manner:
Complex pole:

a=09622 B = 12214
C = 2417647 (5-50)
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D = 0.128293 (5-51)
E = 4.010745 (5-52)
G = 4.002529 (5-53)
0 = 15.602243 (5-54)
M = 1.000832 (5-55)
W = 1.041630 (5-56)
£, = 288.0 Hz (5-57)
f,=3125Hz (5-58)

Real pole:

a, = 0.9776
0 =1534 (5-59)
£, = 300.0 Hz

(c¢) A midband gain of +12 dB is required. Let us allocate a gain of +4 dB to each sec-
tion corresponding to A, = 1.585. The value of A,, the resonant frequency gain for
each section, is obtained from Equation (5-64) and is listed in the following table,
which summarizes the design parameters of the filters sections:

I o A,
Section 1 288.0 Hz 15.60 2.567
Section 2 312.5Hz 15.60 2.567
Section 3 300.0 Hz 15.34 1.585

(d) Three MFBP bandpass sections will be connected in tandem. The following ele-
ment values are computed where C is set equal to 0.1 pF:

Section 1:
0 15.6 B
R, = 7fC~ m X 288 X 107 172.4 kQ (5-68)
R, 1724 x 10°
R, = 24" 2x2567 33.6 kQ (5-72)
Ry)2 86.2 X 103
R, = = : =178 Q 5-73
202 — A, 2 X 156 — 2567 (5-73)
Section 2: Section 3:
R, = 158.9kQ) R, = 162.8 kQ)
R,, = 309kQ R,, =513kQ
R, =164 Q R, =174Q
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Section 1 Section 2 Section 3
FIGURE 5-26 The MFBP circuit of Example 5-12.

The final circuit is shown in Figure 5-26. Resistor values have been rounded off to stan-
dard 1-percent values, and resistor R,, has been made variable in each section for tun-
ing purposes.

Each filter section can be adjusted by applying a sine wave at the section f, to the filter
input. The phase shift of the section being adjusted is monitored by connecting one chan-
nel of an oscilloscope to the section input and the other channel to the section output. A
Lissajous pattern is thus obtained. Resistor R,, is then adjusted until the ellipse closes to a
straight line.

The Dual-Amplifier Bandpass (DABP) Structure.  The bandpass circuit of Figure 5-27
was first introduced by Sedra and Espinoza (see Bibliography). Truly remarkable perfor-
mance in terms of available Q, low sensitivity, and flexibility can be obtained in compari-
son with alternate schemes involving two amplifiers.

The transfer function is given by

s2/R,C
s> + sl/R,C + 1/R,R,C?

T(s) =

(5-78)

R5= R'

FIGURE 5-27 A dual-amplifier bandpass (DABP)
configuration (Q < 15).
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If we compare this expression with the general bandpass transfer function of Equation (5-
48) and let R,R, = R?, the following design equations for the element values can be obtained.
First, compute

1
R = 2mfC (5-79)
then R, = OR (5-80)
R, =R, =R (5-81)

where C is arbitrary. The value of R’ in Figure 5-27 can also be chosen at any convenient
value. Circuit gain at f, is equal to 2.
The following sensitivities can be derived:

5¢ =1 (5-82)
S, =S =Sk = Sh=—112 (5-83)
S, = 112 (5-84)

An interesting result of sensitivity studies is that if the bandwidths of both amplifiers are
nearly equivalent, extremely small deviations of Q from the design values will occur. This
is especially advantageous at higher frequencies where the amplifier poles have to be taken
into account. It is then suggested that a dual-type amplifier be used for each filter section
since both amplifier halves will be closely matched to each other.

A useful feature of this circuit is that resonant frequency and Q can be independently
adjusted. Alignment can be accomplished by first adjusting R, for resonance at f,. Resistor
R, can then be adjusted for the desired Q without affecting the resonant frequency.

Since each section provides a fixed gain of 2 at f,, a composite filter may require an addi-
tional amplification stage if higher gains are needed. If a gain reduction is desired, resistor R,
can be split into two resistors to form a voltage divider in the same manner as in Figure 5-25b.
The resulting values are

2R
R,= "1 (5-85)

R,A
and Ry =51 (5-86)

where A, is the desired gain at resonance.
The spread of element values of the MFBP section previously discussed is equal to 40> In
comparison, this circuit has a ratio of resistances determined by Q, so the spread is much less.
The DABP configuration has been found very useful for designs covering a wide range
of Qs and frequencies. Component sensitivity is small, resonant frequency and Q are eas-
ily adjustable, and the element spread is low. The following example illustrates the use of
this circuit.

Example 5-13 Design of an Active All-Pole Bandpass Filter Using the DABP
Configuration

Required:

Design an active bandpass filter to meet the following specifications:
A center frequency of 3000 Hz

3 dBat =30 Hz

20-dB minimum at =120 Hz
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Result:

(a) If we consider the requirement as being arithmetically symmetrical, the bandpass
steepness factor becomes

_ stopband bandwidth 240 Hz
s~ passband bandwidth ~ 60 Hz

=4 (2-19)

We can determine from the curve of Figure 2-34 that a second-order Butterworth
low-pass filter provides over 20 dB of rejection within a frequency ratio of 4:1. The
corresponding poles of the normalized low-pass filter are found in Table 11-1 and
are as follows:

—0.7071 = j0.7071
(b) To convert these poles to the bandpass form, first compute:

0 - Jo 3000 Hz
"~ BW,; 60 Hz

=50 (2-16)

The bandpass poles transformation is performed in the following manner:

a = 0.7071 B = 0.7071

C = 1.000000 (5-50)
D = 0.028284 (5-51)
E = 4.000400 (5-52)
G = 4.000000 (5-53)
0 = 70713124 (5-54)
M = 1.000025 (5-55)
W = 1.007096 (5-56)
f., =2978.9 Hz (5-57)
£, =3021.3 Hz (5-58)

(c¢) Two DABP sections will be used. The element values are now computed, where C
is set equal to 0.01wF and R’ is 10 k().

Section 1:
f.=29789 Hz
0 =170.7
R = L _ ! — = 5343Q (5-79)
2@f,C 27 X 2978.9 X 1078
R, = OR =70.7 X 5343 = 377.7kQ (5-80)
R, =R, =R=15343(Q) (5-81)
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Section 1 Section 2
FIGURE 5-28 The DABP filter of Example 5-13.

Section 2:
f.=3021.3 Hz
Q=707
R =5268Q (5-79)
R, = 3724kQ (5-80)
R, =R, = 52680 (5-81)

The circuit is illustrated in Figure 5-28, where resistors have been rounded off to stan-
dard 1-percent values and R, is made adjustable for tuning.

Low-Sensitivity Three-Amplifier Configuration. The DABP circuit shown in Figure 5-27
provides excellent performance and is useful for general-purpose bandpass filtering. A modi-
fied version utilizing a total of three amplifiers is shown in Figure 5-29. This circuit will exhibit
performance superior to the DABP configuration, especially at higher frequencies. Using this
structure and off-the-shelf op amps, active bandpass filters having moderate percentage band-
widths can be designed to operate in the frequency range approaching 1-2 MHz.

The section within the dashed line in Figure 5-29 realizes a shunt inductance to ground
using a configuration called a gyrator.* Both op amps within this block should be closely
matched to obtain low op-amp sensitivity at high frequencies, so the use of a dual op amp
for this location would be highly recommended. The third op amp serves as a voltage fol-
lower or buffer to obtain low output impedance.

*A gyrator is an impedance inverting device which converts an impedance Z into a reciprocal impedance 1/G*Z,
where G is a constant. Therefore, a capacitor having an impedance 1/SC can be converted into an impedance SC/G?,
which corresponds to an inductance of C/G?. For this circuit o = 1/R, so L = R>C.
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ST "R e
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I

FIGURE 5-29 Low-sensitivity three-amplifier band-
pass configuration.

As in the case of the DABP circuit, resonant frequency and Q can be adjusted indepen-
dently. The design proceeds as follows:
First select a convenient value for C. Then compute

1
R=5.7¢ (5-87)
LetR, =R, =R, =R, =R
Then R, = OR (5-88)

Circuit gain at f, is unity. For additional gain, the voltage follower can be configured as
a noninverting amplifier.

For alignment, first adjust R, for resonance at f,. Resistor R, can then be adjusted for the
desired Q without affecting the resonant frequency.

Example 5-14 Design of an Active All-Pole Bandpass Filter Using the Low-
Sensitivity Three-Amplifier Configuration
Required:

Design an active bandpass filter to meet the following specifications:

A center frequency of 30 kHz

3 dB at =300 Hz
20-dB minimum at 1200 Hz

Result:

(a) Treating the requirement as being arithmetically symmetrical, the bandpass steep-
ness factor is

_ stopband bandwidth 2400 Hz
s 7 passband bandwidth ~— 600 Hz

=4 (2-19)

From Figure 2-34, a second-order Butterworth low-pass filter meets the attenua-
tion. The low-pass poles from Table 11-1 are —0.7071 = j0.7071.
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(b) These poles must now be converted to the bandpass form. The procedure is as
follows

fo 30,000 Hz

% = BW,, = 600H, 0 (2-16)
a =0.7071 B =0.7071
c=1 (5-50)
D = 0.028284 (5-51)
E = 4.000400 (5-52)
G = 4.000000 (5-53)
Q =70.713124 (5-54)
M = 1.000025 (5-55)
W = 1.007096 (5-56)
fra = 29.789 kHz (5-57)
f.» = 30.213 kHz (5-58)
(c¢) Compute the element values for the circuit of Figure 5-29 using C = 0.01 pF.
Section 1:
f.=129.789 kHz
0 =170.71
R = 1 _ 1
2af,C 27 X 29.789 X 1073
=5343Q (5-87)
R, = QR =70.7 X 534.3 = 37.8 k() (5-88)
Section 2:

f.=30.213 kHz

0 =17071
R =5268Q (5-87)
R, =37.2kQ (5-88)

The circuit of this example is illustrated in Figure 5-30 using standard 1-percent resis-
tor values and a potentiometer for frequency adjustment.

The State-Variable (Biquad) All-Pole Circuit. The state-variable or biquad configura-
tion was first introduced in Section 3.2 for use as a low-pass filter section. A bandpass out-
put is available as well. The biquad approach features excellent sensitivity properties and
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FIGURE 5-30 The bandpass filter of Example 5-14.

the capability to control resonant frequency and Q independently. It is especially suited for
constructing precision-active filters in a standard form.

The circuit of Figure 5-31 is the all-pole bandpass form of the general biquadratic con-
figuration. The transfer function is given by

SICR,
s2 + s/CR, + 1/R,R,C*?

T(s) = (5-89)

If we equate this expression to the general bandpass transfer function of Equation
(5-48), the circuit resonant frequency and 3-dB bandwidth can be expressed as

1
Y PN e (5-90)
2m C'V R,R,
1
and BW = — (5-91)
38 27R,C
where BW; 3 is equal to /0.
Rs
MV
Ry
— AMN——
C
el ‘
a4 ‘
In O—AAA— Ra R’
R

o
Out

FIGURE 5-31 A biquad all-pole circuit (Q < 200).
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Equations (5-90) and (5-91) indicate that the resonant frequency and 3-dB bandwidth
can be independently controlled. This feature is highly desirable and can lead to many use-
ful applications, such as variable filters.

If we substitute f,/Q for BW, 4 and set R, = R;, the following design equations can be
derived for the section:

Y
R = 3rc (5-92)
R
R, =R, = 51 (5-93)
Rl
and Ry=4 (5-94)

where A, is the desired gain at resonant frequency f,. The values of C and R’ in Figure 5-31
can be conveniently selected. By making R, and R, adjustable, the resonant frequency and
0, respectively, can be adjusted.

The sensitivity factors are

Sllé'2 = S%} =8k=—1/2 (5-95)
sg =1 (5-96)
20
and §¢ = ™ (5-97)

where u is the open-loop gain of amplifiers A, and A,. The section Q is then limited by the
finite gain of the operational amplifier.

Another serious limitation occurs because of finite amplifier bandwidth. Thomas (see
Bibliography) has shown that, as the resonant frequency increases for a fixed design Q, the
actual Q remains constant over a broad band and then begins to increase, eventually becom-
ing infinite (oscillatory). This effect is called Q enhancement.

If we assume that the open-loop transfer function of the amplifier has a single pole, the
effective Q can be approximated by

Qdesign

2Qdcsign
lu’Owc @r = (l)c)

Qeff = (5—98)

1 —

where w, is the resonant frequency, w, is the 3-dB breakpoint of the open-loop amplifier gain,
and p,, is the open-loop gain at DC. As w, is increased, the denominator approaches zero.

The Q-enhancement effect can be minimized by having a high gain-bandwidth product.
If the amplifier requires external frequency compensation, the compensation can be made
lighter than the recommended values. The state-variable circuit is well suited for light com-
pensation since the structure contains two integrators which have a stabilizing effect.

A solution suggested by Thomas is to introduce a leading phase component in the feed-
back loop which compensates for the lagging phase caused by finite amplifier bandwidth.
This can be achieved by introducing a capacitor in parallel with resistor R; having the value

4

» = 7:“0‘*’6 R, (5-99)

Probably the most practical solution is to make resistor R, variable. The Q may be deter-
mined by measuring the 3-dB bandwidth. R, is adjusted until the ratio f,/BW, 4 is equal to
the required Q.
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As the Q is enhanced, the section gain is also increased. Empirically it has been found
that correcting for the gain enhancement compensates for the Q enhancement as well. R, can
be adjusted until the measured gain at f, is equal to the design value of A, used in Equation
(5-94). Although this technique is not as accurate as determining the actual Q from the 3-dB
bandwidth, it certainly is much more convenient and will usually be sufficient.

The biquad is a low-sensitivity filter configuration suitable for precision applications.
Circuit Qs of up to 200 are realizable over a broad frequency range. The following exam-
ple demonstrates the use of this structure.

Example 5-15 Design of an Active All-Pole Bandpass Filter Using the Biquad
Configuration
Required:

Design an active bandpass filter satisfying the following specifications:

A center frequency of 2500 Hz

3dBat *15Hz

15-dB minimum at =45 Hz

A gain of +12 dB at 2500 Hz

Result:

(a) The bandpass steepness factor is determined from

stopband bandwidth 90 Hz _ 3 519
s~ passband bandwidth ~ 30 Hz ~— (2-19)

Using Figure 2-42, we find that a second-order 0.1-dB Chebyshev normalized low-
pass filter will meet the attenuation requirements. The corresponding poles found
in Table 11-23 are as follows:

—0.6125 = j0.7124

(b) To transform these low-pass poles to the bandpass form, first compute

0. - fo 2500 Hz
" BW,y  30Hz

= 83.33 (2-16)

The bandpass poles are determined from the following series of computations.
Since the filter is very narrow, an extended number of significant figures will be
used in Equations (5-50) through (5-58) to maintain accuracy.

a = 06125 B =07124

C = 0.882670010 (5-50)
D = 0.014700588 (5-51)
E = 4.000127115 (5-52)
G = 4.000019064 (5-53)
0 = 136.0502228 (5-54)
M = 1.000009138 (5-55)
W = 1.004284182 (5-56)
f., = 2489.3 Hz (5-57)
f,, = 2510.7 Hz (5-58)
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(c) Since a midband gain of +12 dB is required, each section will be allocated a mid-
band gain of +6 dB corresponding to A, = 2.000. The gain A, at the resonant fre-
quency of each section is determined from Equation (5-65) and is listed in the
following table:

£ 0 A,

Section 1 2489.3 Hz 136 3.069
Section 2 2510.7 Hz 136 3.069

(d) Two biquad sections in tandem will be used. C is chosen to be 0.1 pF and R' is
10 kQ. The element values are computed as follows:

Section 1:
0 136 _
R, = 2mfC 27 X 2489.3 X 1077 86.9k0 (5-92)
R 3
Ry=Ry=" = % ~ 6390 (5-93)
R 869 x 100
R, = A= 30600 28.3kQ (5-94)
Section 2:
R, = 862 kQ (5-92)
R, =R, =634 Q (5-93)
R, =28.1kQ (5-94)

The final circuit is shown in Figure 5-32. Resistors R; and R, are made variable so
that resonant frequency and Q can be adjusted. Standard values of 1-percent resis-
tors have been used.

The Q-Multiplier Approach. Certain active bandpass structures such as the MFBP
configuration of Section 5.2 are severely Q-limited because of insufficient amplifier gain
or other inadequacies. The technique outlined in this section uses a low-Q-type bandpass
circuit within a Q-multiplier structure which increases the circuit Q to the desired value.

A bandpass transfer function having unity gain at resonance can be expressed as

)

E’s
() = ——@% (5-100)
24 s + o?
Q r
If the corresponding circuit is combined with a summing amplifier in the manner shown
in Figure 5-33a, where 3 is an attenuation factor, the following overall transfer function can

be derived:

T(s) = = (5-101)
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FIGURE 5-32 The biquad circuit of Example 5-15.

The middle term of the denominator has been modified so that the circuit Q is given
by Q/(1 — B), where 0 < 8 < 1. By selecting a 3 sufficiently close to unity, the Q can
be increased by the factor 1/(1 — B). The circuit gain is also increased by the same
factor.

If we use the MFBP section for the bandpass circuit, the Q-multiplier configuration will
take the form of Figure 5-33b. Since the MFBP circuit is inverting, an inverting amplifier
can also be used for summing.

The value of 3 can be found from

9,
Qeff

B=1- (5-102)

where Q. is the effective overall O, and Q, is the design Q of the bandpass section. The
component values are determined by the following equations:

(5-103)

= W

R, =
R, = (5-104)
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FIGURE 5-33 Q-multiplier circuit: (a) block diagram; and () a realization using
an MFBP section.
and Ry= —F (5-105)
(I - BA,

where R can be conveniently chosen and A, is the desired gain at resonance.
Design equations for the MFBP section were derived in Section 5.2 and are repeated
here corresponding to unity gain.

o,
Ry = c (5-68)
R
R, = 72 (5-72)
R a
and Rlb = 2Q271_1 (5—73)

The value of C can be freely chosen.

The configuration of Figure 5-33b is not restricted to the MFBP section. The state-
variable all-pole bandpass circuit may be used instead. The only requirements are that the
filter section be of an inverting type and that the gain be unity at resonance. This last
requirement is especially critical because of the positive feedback nature of the circuit.
Small gain errors could result in large overall Q variations when (3 is close to 1. It may then
be desirable to adjust section gain precisely to unity.

Example 5-16 Design of an Active Bandpass Filter Section Using the Q-Multiplier
Configuration
Required:
Design a single bandpass filter section having the following characteristics:
A center frequency of 3600 Hz
3-dB bandwidth of 60 Hz
A gain of 3
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Result:
(a) The bandpass Q is given by

fo_ 3600 Hz
%= Bw,, ~ 60H, 310

A Q-multiplier implementation using the MFBP section will be employed.

(b) Let us use a Q, of 10 for the MFBP circuit. The following component values are
computed where C is set equal to 0.01 pF.

o, 10
R, = = = 88.4kQ 5-68
2 @, C w3600 X 1078 (5-68)

R 3

R, == w = 442K0 (5-72)
Ry _ 442 x10°
2001 2% 10— 1

R, = =220 (5-73)

The remaining values are given by the following design equations where R is cho-
sen at 10 k() and gain A, is equal to 3:

o, 10

- =1 -9 8333 5-102
& O 60 (-102)

_R_ 100 _
R =% = gasm = 120K0 (5-103)
R, =R=10kQ (5-104)

4

Ro=—FR 10 = 20kQ (5-105)

(1 —p)A, (1 —0.8333)3

The resulting circuit is shown in Figure 5-34 using standard resistor values. R, has
been made adjustable for tuning.

121 kQ
ANV
0.01 uF
10 kQ J lF
20 kQ 88 7 kQ
In O—AAN— 44.2 kQ 001 puF
——0 Out
174 Q
100 .0.

FIGURE 5-34 The Q-multiplier section of Example 5-16.
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Elliptic-Function Bandpass Filters. An active elliptic-function bandpass filter is designed
by first transforming the low-pass poles and zeros to the bandpass form using the formulas of
Section 5.2. The bandpass poles and zeros are then implemented using active structures.
Normalized low-pass poles and zeros for elliptic-function low-pass filters can be obtained
in terms Q, w,, w.,, and «, using the Filter Solutions program.
The general form of a bandpass transfer function containing zeros was given in
Section 5.2 as

H(s> + w?)
3]

r

0

1(s) = (5-49)

2+ —s + o?

Elliptic-function bandpass filters are composed of cascaded first-order bandpass sec-
tions. When 7 is odd, n — 1 zero-producing sections are required, along with a single all-
pole section. When 7 is even, n — 2 zero-producing sections are used, along with two
all-pole networks.

This section discusses the VCVS and biquad configurations, which have a transfer func-
tion in the form of Equation (5-49) and their use in the design of active elliptic-function
bandpass filters.

VCVS Network. Section 3.2 discussed the design of active elliptic-function low-pass
filters using an RC section containing a voltage-controlled voltage source (VCVS). The cir-
cuit is repeated in Figure 5-35a. This structure is not restricted to the design of low-pass fil-
ters extensively. Transmission zeros can be obtained at frequencies either above or below
the pole locations as required by the bandpass transfer function.

First, calculate

a= é (5-106)
(e _
b= 7 (5-107)

where Q, f.,, andf,are the bandpass parameters corresponding to the general form bandpass
transfer function given in Equation 5-49.
The element values are computed as follows:

Select C.

Then Cc,=¢C (5-109)

C,
C=C = X (5-110)

Cb— 1)

and C, = 7 (5-111)
R, = 1 (5-112)

’ cCl\/lg
R, =R, = 2R, (5-113)
R, = 4\/5 (5-114)

cC/(1 — b) + 4cC,
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‘\2' - W —o0 Out

Ino— o /
L] l
I

(@
Cy
11
R
Ry Rz >
———AAA————AAA——
Raq —O Out
In O—4 4 +
C3 C4
R3

Icz Rap

(®)

FIGURE 5-35 The VCVS elliptic-function bandpass section: (a) circuit for K > 1;
and (b) circuit for K < 1.

K=2+£— L (i—ac) (5-115)
Cl 2\/> C \/> CR4 2

R, =R (5-116)

R, = (K — DR (5-117)

where R can be arbitrarily chosen.
In the event that K is less than 1, the circuit of Figure 5-35b is used. Resistor R, is split
into two resistors, R,, and R,,, which are given by

R,=0—-K)R, (5-118)
and R,, = KR, (5-119)
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The section Q can be controlled independently of resonant frequency by making R, or R,
adjustable when K > 1. The resonant frequency, however, is not easily adjusted. Experience
has shown that with 1-percent resistors and capacitors, section Qs of up to 10 can be realized
with little degradation to the overall filter response due to component tolerances.

The actual circuit Q cannot be measured directly since the section’s 3-dB bandwidth is
determined not only by the design Q but by the transmission zero as well. Nevertheless, the
VCVS configuration uses a minimum number of amplifiers and is widely used by low-Q
elliptic-function realizations. The design technique is demonstrated in the following example.

Example 5-17 Design of an Active Elliptic-Function Bandpass Filter Using the
VCVS Configuration

Required:
An active bandpass filter
A center frequency of 500 Hz

1-dB maximum at +100 Hz (400 Hz, 600 Hz)
35-dB minimum at =363 Hz (137 Hz, 863 Hz)

Result:

(a) Convert to geometrically symmetrical bandpass requirements:

First, calculate the geometric center frequency
£y = V.f, = V400 X 600 = 490.0 Hz (2-14)

Since the stopband requirement is arithmetically symmetrical, compute stopband
bandwidth using Equation (5-18).

13 4902
BWisig = /5 — E = 863 — 263 584.8 Hz

The bandpass steepness factor is given by

__ stopband bandwidth 584 8 Hz
s 7 passband bandwidth ~ 200 Hz

=2.924 (2-19)

(b) Open Filter Solutions.
Check the Stop Band Freq box.
Enter .18 in the Pass Band Ripple(dB) box.
Enter 1 in the Pass Band Freq box.
Enter 2.924 in the Stop Band Freq box.
Check the Frequency Scale Rad/Sec box.

(c) Click the Set Order control button to open the second panel.
Enter 35 for the Stopband Attenuation (dB).
Click the Set Minimum Order button and then click Close.

3 Order is displayed on the main control panel.

(d) Click the Transfer Function button.
Check the Casc box.
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The following is displayed:

Continuous Transfer Function

Whn = 3.351

1134 (S°+11.23)

(S +.883) (S°+.7697*S + 1.441)

Wo=1.2
Q=1.56

3rd Order Low Pass Elliptic

Pass Band Frequency = 1.000 Rad/Sec Stop Band Ratio = 2.924
Pass Band Ripple = 180.0 mdB Stop Band Frequency = 2.924 Rad/Sec
Stop Band Attenuation = 37.51 dB

(e) The normalized low-pass design parameters are summarized as follows:
Section Q = 1.56
Section w, = 1.2
Section w,, = 3.351
a, = 0.883 (from the denominator)

The pole coordinates in rectangular form are

a= 2 _ 03646
20 7

B = Vawi:— a®= 11367

(f) To determine the bandpass parameters, first compute

0 = Jo _490Hz
® = BW,, 200 Hz

=245 (2-16)
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The poles and zeros are transformed as follows:

Complex pole:
a = 03846 B = 1.1367
C = 1.440004 (5-50)
D = 0.313959 (5-51)
E = 4.239901 (5-52)
G =4.193146 (5-53)
0 = 6.540396 (5-54)
M = 1.026709 (5-55)
W = 1.259369 (5-56)
f. =389 Hz (5-57)
f, =617Hz (5-58)
Real pole:
a, = 0.883
Q = 27746 (5-59)
f. =490 Hz
Zero:
w, = 3.351
H = 1935377 (5-60)
Z = 1.895359 (5-61)
Joa = 258.5Hz (5-62)
fop = 928.7Hz (5-63)

The bandpass parameters are summarized in the following table, where the zeros
are arbitrarily assigned to the first two sections:

Section I 0 I
1 389 Hz 6.54 258.5 Hz
2 617 Hz 6.54 928.7 Hz
3 490 Hz 2.77

(g) Sections 1 and 2 are realized using the VCVS configuration of Figure 5-35. The ele-
ment values are computed as follows, where R" and R are both 10 k().
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Section 1:
[, =389 Hz
0 =654
f. =259 Hz
a = 0.15291 (5-106)
b =0.4433 (5-107)
c = 2444 (5-108)
Let C=0.02 uF
then C, =0.02 pF (5-109)
C;=C,=0.01pF (5-110)
C, = —0.0027835 nF (5-111)
Let G, =0
R, = 30.725 kQ) (5-112)
R, =R, = 61.450kQ (5-113)
R, = 97.866 k() (5-114)
K =2.5131 (5-115)
Section 2:
f.=617Hz
0 =654
f =929 Hz
a = 0.15291 (5-106)
b =2.2671 (5-107)
c = 3877 (5-108)
Let C=0.02 uF
then C, =0.02 uF (5-109)
C;=C,=0.01pF (5-110)
C, = —0.006335 wF (5-111)
Let C, =0.01 pF
R, = 8566 () (5-112)
R, =R, =17.132kQ (5-113)
R, = 105.98 kQ (5-114)
K =3.0093 (5-115)
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619 kQ

INO=9 0.01uF 001 uF

309 k2 8.66 k 0.01 uF

||H

Section 1 Section 2

178 kQ

0.01 uF| —0 Out

Section 3
FIGURE 5-36 The circuit of the elliptic-function bandpass filter in Example 5-17.

(h) Section 3 is required to be of the all-pole type, so the MFBP configuration of
Figure 5-25b will be used, where C is chosen as 0.01 wF and the section gain A, is
set to unity:

Section 3:
f. =490 Hz
Q=271
R, = 179.9 kQ (5-68)
R,, = 89.97 kQ) (5-72)
R, = 627kQ (5-73)

The complete circuit is shown in Figure 5-36 using standard 1-percent resistor values.

State-Variable (Biquad) Circuit. The all-pole bandpass form of the state-variable or
biquad section was discussed in Section 5.2. With the addition of an operational amplifier,
the circuit can be used to realize transmission zeros as well as poles. The configuration is
shown in Figure 5-37. This circuit is identical to the elliptic-function low-pass and high-
pass filter configurations of Sections 3.2 and 4.2. By connecting R; either to node 1 or to
node 2, the zero can be located above or below the resonant frequency.

On the basis of sensitivity and flexibility, the biquad configuration has been found to
be the optimum method of constructing precision active elliptic-function bandpass fil-
ters. Section Qs of up to 200 can be obtained, whereas the VCVS section is limited to Qs
below 10. Resonant frequency f,, Q, and notch frequency f,, can be independently moni-
tored and adjusted.
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R3
AV
Ry
.I—_.W————

Bandpass node
C
"

Rq ‘
In O—¢— N N\—4 3 R, R'
1 R
L 2
fo>f, fu<f,
>
R % R Rs Rg
Out
+
FIGURE 5-37 A biquad elliptic-function bandpass configuration.
For the case where f., < f,, the transfer function is given by
R;R
o— (1 -2 )
R R,R,C? RR;
T(s) = (5-120)
R 52 + LY + I
RC' T RR,C?
and when f,, > f,, the corresponding transfer function is
1 RiR )
24+ 1+
R, R2R2C2( R Ry
T(s) = (5-121)
R sZ + LS + #
R,C R,R,C?

If we equate the transfer-function coefficients to those of the general bandpass transfer
function (with zeros) of Equation (5-49), the following series of design equations can be
derived:

0
Ri=R =5 - (5-122)
Rl
R=R =4 (5-123)

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2006 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.



BANDPASS FILTERS

232 CHAPTER FIVE
R, = SR (5-124)
*0f - fi
[iR
for f,, > f.: R = 7 (5-125)
and when f,, < f: Ry =R (5-126)

where C and R can be conveniently selected. The value of R, is based on unity section gain.
The gain can be raised or lowered by proportionally changing R,.

The section can be tuned by implementing the following steps in the indicated sequence.
Both resonant frequency and Q are monitored at the bandpass output occurring at node 3,
whereas the notch frequency f., is observed at the section output.

1. Resonance frequency f,: If Ry is made variable, the section resonant frequency can be
adjusted. Resonance is monitored at node 3 (see Figure 5-37) and can be determined by
the 180° phase shift method.

2. Q adjustment: The section Q is controlled by R, and can be directly measured at
node 3. The configuration is subject to the Q-enhancement effect discussed in
Section 5.2 under “All-Pole Bandpass Configurations,” so a Q adjustment is nor-
mally required. The Q can be monitored in terms of the 3-dB bandwidth at node 3,
or R, can be adjusted until unity gain occurs between the section input and node 3
with f, applied.

3. Notch frequency f..: Adjustment of the notch frequency (transmission zero) usually is
not required if the circuit is previously tuned to f,, since f,, will usually then fall in. If an
adjustment is desired, the notch frequency can be controlled by making R; variable.

The biquad approach is a highly stable and flexible implementation for precision active
elliptic-function filters. The independent adjustment capability for resonant frequency, Q,
and the notch frequency preclude its use when Qs in excess of 10 are required. Stable Qs
of up to 200 are obtainable.

Example 5-18 Design of an Active Elliptic-Function Bandpass Filter Using the Biquad
Configuration
Required:

An active bandpass filter

A center frequency 500 Hz

0.2-dB maximum at =50 Hz (450 Hz, 550 Hz)

30-dB minimum at =130 Hz (370 Hz, 630 Hz)

Result:

(a) Convert to the geometrically symmetrical requirement

£, = VIf, = V450 x 550 = 497.5 Hz (2-14)

2 2
BW; a5 = /2 f% = 630 — % = 237.1 Hz (5-18)
_ stopband bandwidth _ 237.1Hz

A = passband bandwidth ~ 100 Hz

= 2371 (2-19)
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(b) Open Filter Solutions.
Check the Stop Band Freq box.
Enter .18 in the Pass Band Ripple(dB) box.
Enter 1 in the Pass Band Freq box.
Enter 2.371 in the Stop Band Freq box.
Check the Frequency Scale Rad/Sec box.

(c) Click the Set Order control button to open the second panel.
Enter 30 for the Stopband Attenuation (dB).
Click the Set Minimum Order button and then click Close.
3 Order is displayed on the main control panel.

(d) Click the Transfer Function button.
Check the Casc box.
The following is displayed:

Continuous Transfer Function

Wn =2.705

1784 (S°+7.32)

(8% + 7321*S + 1.435) (S +.9105)

Wo =1.198
Q=1.636

3rd Order Low Pass Elliptic

Pass Band Frequency = 1.000 Rad/Sec Stop Band Ratio = 2.371
Pass Band Ripple = 180.0 mdB Stop Band Frequency = 2.371 Rad/Sec
Stop Band Attenuation = 31.59 dB
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(e) The normalized low-pass design parameters are summarized as follows:

Section Q = 1.636
Section w, = 1.198
Section w,, = 2.705

a, = 0.9105 (from the denominator)

The pole coordinates in rectangular form are

a=&=03661
20 '

B = Vi — a® = 1.1408
(f) The bandpass pole-zero transformation is now performed. First compute

0. - fo  _4975Hz
" BW,,, 100 Hz

= 4.975 (2-16)

The transformation proceeds as follows:

Complex pole:
a = 03661 B = 1.1408
C = 1.435454 (5-50)
D = 0.147176 (5-51)
E = 4.05800 (5-52)
G = 4.047307 (5-53)
0 = 13.678328 (5-54)
M = 1.006560 (5-55)
W =1.121290 (5-56)
f.. =443.6 Hz (5-57)
f, = 557.8 Hz (5-58)
Real pole:
a, = 0.9105
0 =5.464 (5-59)
f,=4975Hz
Zero:
w, = 2.705
H = 1.147815 (5-60)
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Z = 1308154 (5-61)
feu = 380.31 Hz (5-62)
fop = 650.81 Hz (5-63)

The computed bandpass parameters are summarized in the following table. The
zeros are assigned to the first two sections.

Section £ 0] e
1 443.6 Hz 13.7 380.3 Hz
2 557.8 Hz 13.7 650.8 Hz
3 497.5 Hz 5.46

(g) Sections 1 and 2 will be realized in the form of the biquad configuration of
Figure 5-37 where R’ and R are both 10 kQ and C = 0.047 pF.

Section 1:
f, = 443.6 Hz
0 =137
f. = 380.3 Hz
R, =R, = 2 . 104.58 kQ) (5-122)
2mf,C
Rl
R, =R, = 0" 7.63 kQ (5-123)
Rs = i = 2.76kQ (5-124)
o1/ - £
Ry, =R =10kQ (5-126)
Section 2:
f,=557.8Hz
0=137
f.. = 650.8 Hz
R, =R, = 83.17kQ (5-122)
R, = R, = 6.07kQ (5-123)
Ry =2.02 kO (5-124)
Ry =735k (5-125)

(h) The MFBP configuration of Figure 5-25b will be used for the all-pole circuit of sec-
tion 3. The value of Cis 0.047 wF, and A, is unity.
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Section 3:
f,=497.5Hz
Q=546
R, = 743 kQ
R,, = 37.1kQ
R, = 634Q

(5-68)
(5-72)
(5-73)

The resulting filter is shown in Figure 5-38, where standard 1-percent resistors are used.
The resonant frequency and Q of each section have been made adjustable.

7.5 kQ 500 @
|50k 806 k2 A |
0047 pF 0047 uF
Il .04
105 kQ K
+
)  2.80 kQ2
10 k02 N Section 1
[+
- 576 kil 500 O
50 kQ 57.6 kQ A
0.047 uF
Y 0.047 uF
T 10 k&
825k
N 6.04 kQ 0.8
T 1oxs 1 ﬁfﬂos
7.32 kQ
10 kQ VWA Section 2
i 0.047 uF
+
1 75 kQ
= 0047 uF
37.4 kQ o Out
590 Q
100 0
_Secﬁon 3

FIGURE 5-38 The biquad elliptic-function bandpass filter of Example 5-18.
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Source: ELECTRONIC FILTER DESIGN HANDBOOK

CHAPTER 6
BAND-REJECT FILTERS

6.1 LC BAND-REJECT FILTERS

Normalization of a band-reject requirement and the definitions of the response shape para-
meters were discussed in Section 2.1. Like bandpass filters, band-reject networks can also
be derived from a normalized low-pass filter by a suitable transformation.

In Section 5.1, we discussed the design of wideband bandpass filters by cascading a
low-pass filter and a high-pass filter. In a similar manner, wideband band-reject filters can
also be obtained by combining low-pass and high-pass filters. Both the input and output
terminals are paralleled, and each filter must have a high input and output impedance in
the band of the other filter to prevent interaction. Therefore, the order n must be odd and
the first and last branches should consist of series elements. These restrictions make the
design of band-reject filters by combining low-pass and high-pass filters undesirable. The
impedance interaction between filters is a serious problem unless the separation between
cutoffs is many octaves, so the design of band-reject filters is best approached by trans-
formation techniques.

The Band-Reject Circuit Transformation

Bandpass filters were obtained by first designing a low-pass filter with a cutoff frequency
equivalent to the required bandwidth and then resonating each element to the desired cen-
ter frequency. The response of the low-pass filter at DC then corresponds to the response
of the bandpass filter at the center frequency.

Band-reject filters are designed by initially transforming the normalized low-pass filter
into a high-pass network with a cutoff frequency equal to the required bandwidth, and at
the desired impedance level. Every high-pass element is then resonated to the center fre-
quency in the same manner as bandpass filters.

This corresponds to replacing the frequency variable in the high-pass transfer function
by a new variable, which is given by

_(f -E)
fl‘ar - ﬁ)(ﬁ) f (6‘1)

As a result, the response of the high-pass filter at DC is transformed to the band-reject
network at the center frequency. The bandwidth response of the band-reject filter is identi-
cal to the frequency response of the high-pass filter. The high-pass to band-reject transfor-
mation is shown in Figure 6-1. Negative frequencies, of course, are strictly of theoretical
interest, so only the response shape corresponding to positive frequencies is applicable. As
in the case of bandpass filters, the response curve exhibits geometric symmetry.

239
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FIGURE 6-1 The band-reject transformation: (a) high-pass filter response; and
(b) transformed band-reject filter response.

The design procedure can be summarized as follows:

1. Normalize the band-reject filter specification and select a normalized low-pass filter
that provides the required attenuation within the computed steepness factor.

2. Transform the normalized low-pass filter to a normalized high-pass filter. Then scale
the high-pass filter to a cutoff frequency equal to the desired bandwidth and to the pre-
ferred impedance level.

3. Resonate each element to the center frequency by introducing a capacitor in series with
each inductor and an inductor in parallel with each capacitor to complete the design. The
transformed circuit branches are summarized in Table 6-1.

All-Pole Band-Reject Filters. Band-reject filters can be derived from any all-pole or
elliptic-function LC low-pass network. Although not as efficient as elliptic-function filters,
the all-pole approach results in a simpler band-reject structure where all sections are tuned
to the center frequency.

The following example demonstrates the design of an all-pole band-reject filter.

Example 6-1 Design of an All-Pole LC Band-Reject Filter
Required:

Band-reject filter
A center frequency of 10 kHz
3 dB at =250 Hz (9.75 kHz, 10.25 kHz)
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TABLE 6-1 The High-Pass to Band-Reject Transformation
High-Pass Band-Reject Circuit
Branch Configuration Values
L
¢ 1
Type | o—{}b—o c L=z 62
C
L L 1
Type I o—r_ o o—r~—o }—o C=;{l-. (6-3)
L
Co IYYbY\ 1
oY G= ol (6-4)
Type 111 o—¢—}—+—
Lo L Co L= 1 (6-5)
L—wc/u—{ |'-—- wo Cp
1
G= -6
. r 7% (6-6)
2
1
Ca L, 3G (6-7)

Ly Cz Ly Cy
Type IV o___m_.{ l._o o__rwr\___l

30-dB minimum at =100 Hz (9.9 kHz, 10.1 kHz)
A source and load impedance of 600 Q)

Result:

(a) Convert to a geometrically symmetrical requirement. Since the bandwidth is rela-
tively narrow, the specified arithmetically symmetrical frequencies will determine
the following design parameters:

f, = 10kHz
BW, ;5 = 500 Hz
BW,, 5 = 200 Hz

(b) Compute the band-reject steepness factor.

assband bandwidth
=P 1 _S00Hz o, 4 (2-20)
s stopband bandwidth 200 Hz

The response curves of Figure 2-45 indicate that an n = 3 Chebyshev normalized
low-pass filter having a 1-dB ripple provides over 30 dB of attenuation within a fre-
quency ratio of 2.5:1. The corresponding circuit is found in Table 11-31 and is
shown in Figure 6-2a.

(c) To transform the normalized low-pass circuit into a normalized high-pass filter,
replace inductors with capacitors and vice versa using reciprocal element values.
The transformed structure is shown in Figure 6-2b.
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FIGURE 6-2 The band-reject filter of Example 6-1: (a) normalized low-pass filter; (b) transformed nor-
malized high-pass filter; (¢) frequency- and impedance-scaled high-pass filter; (d) transformed band-reject
filter; and (e) frequency response.

(d) The normalized high-pass filter is scaled to a cutoff frequency of 500 Hz corre-
sponding to the desired bandwidth and to an impedance level of 600 ). The capac-
itors are divided by Z X FSF and the inductors are multiplied by Z/FSF, where Z is
600 and the FSF (frequency-scaling factor) is given by 27f,, where f.is 500 Hz. The
scaled high-pass filter is illustrated in Figure 6-2c.
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(e) To make the high-pass to band-reject transformation, resonate each capacitor with
a parallel inductor and each inductor with a series capacitor. The resonating induc-
tors for the series branches are both given by

1 1
L=— =
®3C  (2m10 X 10%)? X 0.239 X 107°

= 1.06 mH (6-2)

The tuning capacitor for the shunt inductor is determined from

_ 1
WL (210 X 10%? X 0.175

= 1450 pF (6-3)

The final filter is shown in Figure 6-2d, where all peaks are tuned to the center fre-
quency of 10 kHz. The theoretical frequency response is illustrated in Figure 6-2e.

When a low-pass filter undergoes a high-pass transformation, followed by a band-reject
transformation, the minimum Q requirement is increased by a factor equal to the Q of the
band-reject filter. This can be expressed as

O,.in (band-reject) = Q, .. (low-pass) X Q. (6-8)

where values for Q. (low-pass) are given in Figure 3-8 and Q,. = f,/BW; 4. The
branch Q should be several times larger than Q.. (band-reject) to obtain near-theoretical
results.

The equivalent circuit of a band-reject filter at the center frequency can be determined
by replacing each parallel tuned circuit by a resistor of w,LQ, and each series tuned circuit
by a resistor of w,L/Q;. These resistors correspond to the branch impedances at resonance,
where w,, is 27f;, L is the branch inductance, and Q, is the branch Q, which is normally
determined only by the inductor losses.

It is then apparent that at the center frequency, the circuit can be replaced by a resistive
voltage divider. The amount of attenuation that can be obtained is then directly controlled
by the branch Qs. Let’s determine the attenuation of the circuit of Example 6-1 for a finite
value of inductor Q.

min

Example 6-2 Estimate Maximum Band-Reject Rejection as a Function of Q

Required:

Estimate the amount of rejection obtainable at the center frequency of 10 kHz for the
band-reject filter of Example 6-1. An inductor Q of 100 is available and the capacitors
are assumed to be lossless. Also determine if the Q is sufficient to retain the theoretical
passband characteristics.

Result:
(a) Compute the equivalent resistances at resonance for all tuned circuits.

Parallel tuned circuits:

R = w,LQ, = 27 X 10 X 1.06 X 1073 X 100 = 6660 () (5-21)

Series tuned circuits:

_ @l 27 X 10* X 0.175

=0, 100 =110Q (5-30)
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FIGURE 6-3 The equivalent circuit at the center frequency for the filter of Figure 6-2.

(b) The equivalent circuit at 10 kHz is shown in Figure 6-3. Using conventional circuit
analysis methods such as mesh equations or approximation techniques, the overall
loss is found to be 58 dB. Since the flat loss due to the 600-() terminations is 6 dB,
the relative attenuation at 10 kHz will be 52 dB.

(c) The curves of Figure 3-8 indicate that an n = 3 Chebyshev filter with a 1-dB rip-
ple has a minimum theoretical Q requirement of 4.5. The minimum Q of the band-
reject filter is given by

. 10,000
O .in(band-reject) = Q . (low-pass) X Q, = 4.5 X 500 90 (6-8)

Therefore, the available Q of 100 is barely adequate, and some passband rounding
will occur in addition to the reduced stopband attenuation. The resulting effect on
frequency response is shown in Figure 6-4.

dB
Theoretical response

/4
Effect of insufficient Q

Attenuotion

- f

Frequency

FIGURE 6-4 The effects of insufficient Q upon a band-
reject filter.
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Elliptic-Function Band-Reject Filters. The superior properties of the elliptic-function
family of filters can also be applied to band-reject requirements. Extremely steep charac-
teristics in the transition region between passband and stopband can be achieved much
more efficiently than with all-pole filters.

Saal and Ulbrich, as well as Zverev (see Bibliography), have extensively tabulated the
LC values for normalized elliptic-function low-pass networks. Using the Filter Solutions
program or the ELI 1.0 program, low-pass filters can be directly designed using the filter
requirements as the program input rather than engaging normalized tables. These circuits
can then be transformed to high-pass filters, and subsequently to a band-reject filter in the
same manner as the all-pole filters.

Since each normalized low-pass filter can be realized in dual forms, the resulting band-
reject filters can also take on two different configurations, as illustrated in Figure 6-5.

Branch 2 of the standard band-reject filter circuit corresponds to the type III network
shown in Table 6-1. This branch provides a pair of geometrically related zeros, one above
and one below the center frequency. These zeros result from two conditions of parallel
resonance. However, the circuit configuration itself is not very desirable. The elements
corresponding to the individual parallel resonances are not distinctly isolated since each

T

1 2 34 1 2 3 4

Low-pass —————————— High-poss —————————— Band-reject

(@)
o o—] T —yo
E %

0

11

1 2 3 4 1 2 3 4 1 2 3 4
Low-pass —————————— High-poss Bond-reject
()

FIGURE 6-5 The band-reject transformation of elliptic-function filters: (a) standard configuration; and
(b) dual configuration.
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FIGURE 6-6 The equivalent circuit of a type III network.

resonance is determined by the interaction of a number of elements. This makes tuning
somewhat difficult. For very narrow filters, the element values also become somewhat
unreasonable.

An identical situation occurred during the bandpass transformation of an elliptic-function
low-pass filter discussed in Section 5.1. An equivalent configuration was presented as an
alternate and is repeated in Figure 6-6.

The type III network of Figure 6-6 has reciprocal element values which occur when the
band-reject filter has been normalized to a 1-rad/s center frequency since the equation of
resonance, wjLC = 1, then reduces to LC = 1. The reason for this normalization is to
greatly simplify the transformation equations.

To normalize the band-reject filter circuit, first transform the normalized low-pass fil-
ter to a normalized high-pass configuration in the conventional manner by replacing induc-
tors with capacitors and vice versa using reciprocal element values. The high-pass elements
are then multiplied by the factor Q,,, which is equal to f,/BW, where f;, is the geometric cen-
ter frequency of the band-reject filter and BW is the bandwidth. The normalized band-reject
filter can be directly obtained by resonating each inductor with a series capacitor and each
capacitor with a parallel inductor using reciprocal values.

To make the transformation of Figure 6-6, first compute

1 1 1
=1+ + 4/ + -
P ¢, “Nazer T LG (6-9)

The values are then found from

1
L, =~ 6-10
T GBED (10
L, = BL, ©-11)

-1
C, = L (6-12)

1
C, = T (6-13)

The resonant frequencies for each tuned circuit are given by
Q.,=VB (6-14)
and pp——— 6-15)
0, b Qm'a

After the normalized band-reject filter has undergone the transformation of Figure 6-6
wherever applicable, the circuit can be scaled to the desired impedance level and frequency.
The inductors are multiplied by Z/FSF, and capacitors are divided by Z X FSF. The value
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FIGURE 6-7 The equivalent circuit of the
type IV network.

of Z is the desired impedance level, and the frequency-scaling factor (FSF) in this case is
equal to w, (w, = 2mf,). The resulting resonant frequencies in hertz are determined by
multiplying the normalized radian resonant frequencies by f;.

Branch 2 of the band-reject filter derived from the dual low-pass structure of Figure 6-5b
corresponds to the type IV network of Table 6-1. This configuration realizes a pair of finite
zeros resulting from two conditions of series resonance. However, as in the case of the type 111
network, the individual resonances are determined by the interaction of all the elements, which
makes tuning difficult and can result in unreasonable values for narrow filters. An alternate
configuration is shown in Figure 6-7 consisting of two series resonant circuits in parallel.

To simplify the transformation equations, the type IV network requires reciprocal val-
ues, so the band-reject filter must be normalized to a 1-rad/s center frequency. This is
accomplished as previously described, and the filter is subsequently denormalized after the
transformations have been made.

The transformation is accomplished as follows:

1 1 1
— 1+ +4/ + 6-16
B oL, “Narze: LG (6-16)

First, compute

then
a = % (6-17)
C, = (l3+1)L1 (6-18)
L= ci (6-19)
c, = Li (6-20)
0.,= VB (6-21)
Q=g (6-22)

%,q

The standard configuration of the elliptic-function filter is usually preferred over the
dual circuit so that the transformed low-pass zeros can be realized using the structure of
Figure 6-6. Parallel tuned circuits are generally more desirable than series tuned circuits
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since they can be transformed to alternate L/C ratios to optimize Q and reduce capacitor
values (see Section 8.2 on tapped inductors).
Example 6-3 Design of an LC Elliptic Function Band-Reject Filter

Required:
Design a band-reject filter to satisfy the following requirements:

1-dB maximum at 2200 and 2800 Hz
50-dB minimum at 2300 and 2700 Hz
A source and load impedance of 600 ()

Result:

(a) Convert to a geometrically symmetrical requirement. First, calculate the geometric
center frequency.

£, = V1.f, = V2200 X 2800 = 2482 Hz (2-14)

Compute the corresponding geometric frequency for each stopband frequency
given using Equation (2-18).

he =135 (2-18)

fl fz fz*fl

2300 Hz 2678 Hz 378 Hz
2282 Hz 2700 Hz 418 Hz

The second pair of frequencies is retained since they represent the steeper require-
ment. The complete geometrically symmetrical specification can be stated as

f, = 2482 Hz
BW, 4, = 600 Hz
BW,, s = 418 Hz

(b) Compute the band-reject steepness factor.

_ passband bandwidth 600 Hz
s~ stopband bandwidth ~ 418 Hz

= 1.435 (2-20)

A normalized low-pass filter must be chosen that makes the transition from less
than 1 dB to more than 50 dB within a frequency ratio of 1.435. An elliptic-func-
tion filter will be used.

(c) Open Filter Solutions.
Check the Stop Band Freq box.

Enter .18 in the Pass Band Ripple (dB) box.

Enter 1 in the Pass Band Freq box.

Enter 1.435 in the Stop Band Freq box.

The Frequency Scale Rad/Sec box should be checked.
Enter I for Source Res and Load Res.
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(d) Click the Set Order control button to open the second panel.
Enter 50 for the Stopband Attenuation (dB).
Click the Set Minimum Order button and then click Close.
6 Order is displayed on the main control panel.
Check the Even Order Mod box.

(e) Click the Circuits button.

Two schematics are presented by Filter Solutions. Use Passive Filter 1, which is
shown in Figure 6-8a.

(f) The normalized low-pass filter is now transformed into a normalized high-pass
structure by replacing all inductors with capacitors, and vice versa, using recipro-
cal values. The resulting filter is given in Figure 6-8b.

(g) To obtain a normalized band-reject filter so that the transformation of Figure 6-6
can be performed, first multiply all the high-pass elements by Q,, which is given
by

fo 2482 Hz
Ou = BW,,; 600Hz 4137

The modified high-pass filter is shown in Figure 6-8c.
(h) Each high-pass inductor is resonated with a series capacitor, and each capacitor is
resonated with a parallel inductor to obtain the normalized band-reject filter. Since
the center frequency is 1 rad/s, the resonant elements are simply the reciprocal of

each other, as illustrated in Figure 6-8d.

=

(i) The type III networks of the second and fourth branches are now transformed to the
equivalent circuit of Figure 6-6 as follows:

The type lll network of third branch:

L, =11428H C, =3270F

1 1 1

1+ + 4 - 1177 :
B aL,c, " VNazer T LG > ©-9)
1
L =—— —01404H 6-10
«~ BT (6-10)
L, = BL, = 0.1654 H 6-11)
C, =, = 604TF (6-12)
b
C,= 1 = 7.1205F (6-13)
Q,,= VB =10851 (6-14)
0., =g = 092155 (6-15)
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FIGURE 6-8 celliptic-function band-reject filter: (@) normalized low-pass filter; (b) transformed high-pass
filter; (c) high-pass filter with elements multiplied by Q,; and (d) normalized band-reject filter.
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FIGURE 6-8 (Continued) elliptic-function band-reject filter: (e) transformed type III network; (f) fre-

quency- and impedance-scaled circuit; and (g) frequency response.
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The type lll network of fourth branch:

L, =2008H C, =3260F
B = 1.13147
L, =0.1439H
L, = 0.1628 H
C, = 6.1412F
C, = 6.9486 F
Q,, = 1.0637
w,, = 0.94011

®,b

The resulting normalized band-reject filter is shown in Figure 6-8e.

(j) The final filter can now be obtained by frequency- and impedance-scaling the nor-
malized band-reject filter to a center frequency of 2482 Hz and 600 (). The induc-
tors are multiplied by Z/FSF, and the capacitors are divided by Z X FSF, where Z is
600 and the FSF is 27f,, where f, is 2482 Hz. The circuit is given in Figure 6-8f,
where the resonant frequencies of each section were obtained by multiplying the
normalized frequencies by f,. The frequency response is illustrated in Figure 6-8g.

Null Networks. A null network can be loosely defined as a circuit intended to reject a sin-
gle frequency or a very narrow band of frequencies, and is frequently referred to as a trap.
Notch depth rather than rate of roll-off is the prime consideration, and the circuit is restricted
to a single section.

Parallel Resonant Trap. The RC high-pass circuit of Figure 6-9a has a 3-dB cutoff
given by

_ 1
fo= 27RC

(6-23)
A band-reject transformation will result in the circuit of Figure 6-9b. The value of L is
computed from

1
L=—— 6-24
@C (6-24)

where w, = 2mf;. The center frequency is f; and the 3-dB bandwidth is f..

C
c wolQ
L
R R R
i @ T (b) S © ”

FIGURE 6-9 A parallel resonant trap: (a) RC high-pass filter; (b) results of a band-reject trans-
formation; and (c) equivalent circuit at f;,.
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The frequency response of a first-order band-reject filter can be expressed as

A 101 {1 <BW3 dBﬂ (6-25)
= 0, + -
a8 g BWX’dB

where BW, ; is the 3-dB bandwidth corresponding to f. in Equation (6-23), and where
BW, 4 is the bandwidth of interest. The response can also be determined from the nor-
malized Butterworth attenuation curves of Figure 2-34 corresponding to n = 1, where
BW, ;s/BW, i is the normalized bandwidth.

The impedance of a parallel tuned circuit at resonance is equal to w,LQ,, where Q, is the
inductor Q and the capacitor is assumed to be lossless. We can then represent the band-reject
filter at f;, by the equivalent circuit of Figure 6-9c. After some algebraic manipulation involv-
ing Equations (6-23) and (6-24) and the circuit of Figure 6-9¢, we can derive the following
expression for the attenuation at resonance of the n = 1 band-reject filter of Figure 6-9:

Ay = 2010g(% + 1) (6-26)
br

where Qy. = f,/BWj; 4. Equation (6-26) is plotted in Figure 6-10. When Q, is high, the
required inductor Q may become prohibitively large in order to attain sufficient attenuation
at f,,.

The effect of insufficient inductor Q will not only reduce relative attenuation, but will
also cause some rounding of the response near the cutoff frequencies. Therefore, the ratio
0,/0,, should be as high as possible.

10~

0 1 B — 1 1 1 1 1 1 1 1 | .
(] 50 100 150 200 250 300
Qe

Qpr

FIGURE 6-10 Attenuation vs. Q,/Q,..
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Example 6-4 Designing a Parallel Resonant Trap

Required:
Design a parallel resonant circuit which has a 3-dB bandwidth of 500 Hz and a
center frequency of 7500 Hz. The source resistance is zero and the load is 1 k(). Also
determine the minimum inductor Q for a relative attenuation of at least 30 dB at
7500 Hz.

Result:

(a) Compute the value of the capacitor from

_ 1 1
T 2@fR T 2w500 X 1000

C = 0.3183 pF (6-23)

The inductance is given by

1 1
= = — 1.415mH 6-24
@C  2m7500) X 3.183 X 10~ - ©-24)
The resulting circuit is shown in Figure 6-11. 03183 uf
(b) The required ratio of Q,/Q,, for 30-dB attenua-
tion at f, can be determined from Figure 6-10
or Equation (6-26), and is approximately 30. Yy erp

Therefore, the inductor Q should exceed 30 Q,, 1kQ
or 450, where Q,, = f,/BW; 45-

Frequently it is desirable to operate the band-reject FIGURE 6-11 The parallel reso-
network between equal source and load terminations  nant trap of Example 6-4.
instead of a voltage source, as in Figure 6-9. If a source
and load resistor are specified where both are equal to R,
Equation (6-23) is modified to

1

Je = 4mrC (6-27)
‘When the source and load are unequal, the cutoff frequency is given by
f.=  — (6-28)
¢ 2w(R, + R)C

Series Resonant Trap. An n = 1 band-reject filter can also be derived from the RL
high-pass filter of Figure 6-12a. The 3-dB cutoff is determined from

R

fo = 5mi (6-29)

The band-reject filter of Figure 6-12b is obtained by resonating the coil with a series
capacitor where

1

C=——
w%L

(6-24)
The center frequency is f; and the 3-dB bandwidth is equal to f,. The series losses of an
inductor can be represented by a resistor of w,L/Q, . The equivalent circuit of the band-reject
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FIGURE 6-12 A series resonant trap: (a) RL high-pass filter;
(b) result of band-reject transformation; and (c) equivalent circuit at f;,.

network at resonance is given by the circuit of Figure 6-12¢ and the attenuation computed
from Equation (6-26) or Figure 6-10.

Example 6-5 Designing a Series Resonant Trap

Required:

Design a series resonant circuit having a 3-dB bandwidth of 500 Hz and a center fre-
quency of 7500 Hz, as in the previous example. The source impedance is 1 k() and the
load is assumed infinite.

Result:
Compute the element values from the following relationships:

_ R _ 1000 _ )
L= 5af = 3500 0318 H (6-29)
and c="t - 1 opF (6-24)

Wil (27500)°0.318

The circuit is given in Figure 6-13.

When a series resonant trap is to be terminated with a load 1kQ
resistance equal to the source, the high-pass 3-dB cutoff and result-
ing 3-dB bandwidth of the band-reject filter are given by
R 1420 pF
Je = T 630 &
0318 H
For the more general case where source and load are unequal,
the cutoff frequency is determined from
f = R (6-31) FIGURE  6-13 The
¢ 2L series resonant trap of

. ) ) Example 6-5.
where R, is the equivalent value of the source and load resistors

in parallel.

The Bridged-T Configuration. The resonant traps previously discussed suffer severe
degradation of notch depth unless an inductor Q is many magnitudes greater than Q, .. The
bridged-T band-reject structure can easily provide rejection of 60 dB or more with practi-
cal values of inductor Q. The configuration is shown in Figure 6-14a.
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To understand the operation of the circuit, let us first consider the equivalent circuit of
a center-tapped inductor having a coefficient of magnetic coupling equal to unity, which is
shown in Figure 6-14b. The inductance between terminals A and C corresponds to L of
Figure 6-14a. The inductance between A and B or B and C is equal to L/4 since, as the reader
may recall, the impedance across one-half of a center-tapped autotransformer is one-fourth
the overall impedance. This occurs because the impedance is proportional to the turns ratio
squared.

The impedance of a parallel tuned circuit at resonance was previously determined to
be equivalent to a resistor of wyLQ,. Since the circuit of Figure 6-14a is center-tapped,
the equivalent three-terminal network is shown in Figure 6-14¢. The impedance between
A and Cis still w,LQ,. A negative resistor must then exist in the middle shunt branch so
that the impedance across one half of the tuned circuit is one-fourth the overall imped-
ance, or w,LQ,/4. Of course, negative resistors or inductors are physically impossible as
individual passive two-terminal elements, but they can be embedded within an equiva-
lent circuit.

If we combine the equivalent circuit of Figure 6-14¢ with the bridged-T network of
Figure 6-14a, we obtain the circuit of Figure 6-14d. The positive and negative resistors in
the center branch will cancel, resulting in infinite rejection of center frequency. The
degree of rejection actually obtained is dependent upon a variety of factors such as cen-
ter-tap accuracy, the coefficient of coupling, and the magnitude of Q,. When the bridged-
T configuration is implemented after modifying a parallel trap design of Figure 6-9b by
adding a center tap and a resistor of w,LQ,/4, a dramatic improvement in notch depth will
usually occur.

A center-tapped inductor is not always available or practical. An alternate form of a
bridged-T is given in Figure 6-15. The parallel resonant trap design of Figure 6-9 is modified

©) (d)

FIGURE 6-14 A bridged-T null network: (a) circuit configuration; (b) equivalent circuit of center-tapped
inductor; (c) tuned circuit equivalent at resonance; and (d) bridged-T equivalent circuit at resonance.
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2C 2C

wolQ
a

FIGURE 6-15 An alternate form of bridged-T.

by splitting the capacitor into two capacitors of twice the value, and a resistor of w,LQ,/4
is introduced. The two capacitors should be closely matched.

In conclusion, the bridged-T structure is an economical and effective means of increas-
ing the available notch rejection of a parallel resonant trap without increasing the inductor
Q. However, as a final general comment, a single null section can provide high rejection
only at a single frequency or relatively narrow band of frequencies for a given 3-dB band-
width, since n = 1. The stability of the circuit then becomes a significant factor. A higher-
order band-reject filter design can have a wider stopband and yet maintain the same 3-dB
bandwidth.

6.2 ACTIVE BAND-REJECT FILTERS

This section considers the design of active band-reject filters for both wideband and nar-
rowband applications. Active null networks are covered, and the popular twin-T circuit is
discussed in detail.

Wideband Active Band-Reject Filters

Wideband filters can be designed by first separating the specification into individual low-
pass and high-pass requirements. Low-pass and high-pass filters are then independently
designed and combined by paralleling the inputs and summing both outputs to form the
band-reject filter.

A wideband approach is valid when the separation between cutoffs is an octave or more
for all-pole filters so that minimum interaction occurs in the stopband when the outputs are
summed (see Section 2.1 and Figure 2-13). Elliptic-function networks will require less sep-
aration since their characteristics are steeper.

An inverting amplifier is used for summing and can also provide gain. Filters can be
combined using the configuration of Figure 6-16a, where R is arbitrary and A is the desired
gain. The individual filters should have a low output impedance to avoid loading by the
summing resistors.

The VCVS elliptic-function low-pass and high-pass filters of Sections 3.2 and 4.2 each
require an RC termination on the last stage to provide the real pole. These elements can be
combined with the summing resistors, resulting in the circuit of Figure 6-16b. R, and C,
correspond to the denormalized values of Ry for the low-pass filter of Figure 3-20. The
denormalized high-pass filter real-pole values are R, and C,. If only one filter is of the
VCVS type, the summing network of the filter having the low output impedance can be
replaced by a single resistor having a value of R.
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FIGURE 6-16 Wideband band-reject filters: (a) the combining of filters with
low output impedance; and (b) combined filters requiring RC real poles.

When one or both filters are of the elliptic-function type, the ultimate attenuation obtain-
able is determined by the filter having the lesser value of A ,, since the stopband output is
the summation of the contributions of both filters.

Example 6-6 Design of a Wideband Band-Reject Filter

Required:
Design an active band-reject filter having 3-dB points at 100 and 400 Hz, and greater
than 35 dB of attenuation between 175 and 225 Hz.

Result:

(a) Since the ratio of upper cutoff to lower cutoff is well in excess of an octave, a wide-
band approach can be used. First, separate the specification into individual low-
pass and high-pass requirements.

Low-pass: High-pass:
3 dB at 100 Hz 3 dB at 400 Hz
35-dB minimum at 175 Hz  35-dB minimum at 225 Hz

(b) The low-pass and high-pass filters can now be independently designed as follows:

Low-pass filter:

Compute the steepness factor.

A b _115Hz _
* 7 f,~ 100 Hz

1.75 2-11)

Ann = 5 Chebyshev filter having a 0.5-dB ripple is chosen using Figure 2-44. The
normalized active low-pass filter values are given in Table 11-39, and the circuit is
shown in Figure 6-17a.
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9462 F
6842 F
10 10 0 Out
10 10 10
In
01144 F
I 3347 F Io.soss F I
(a)
0151 uF
0109 uf
100 kO | 100 k0 0 Out
' 100 k0 100 kO
n
1820 pF
I 0.0528 uF I 4830 pf I
(b)
—_q
9462
1F —0 Out
1 _q
0.1144
105 kQ

14.7 kQ

3980 pF | 3980 pF

3980 pF 3980 pF | 3980 pF
in

@

FIGURE 6-17 The wideband band-reject filter of Example 6-6: (@) normalized low-pass filter; () denor-
malized low-pass filter; (c) transformed normalized high-pass filter; and (d) denormalized high-pass filter.
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To denormalize the filter, multiply all resistors by Z and divide all capacitors by
Z X FSF, where Z is conveniently selected at 10° and the FSF is 27f,, where f, is
100 Hz. The denormalized low-pass filter is given in Figure 6-17b.

High-pass filter:
Compute the steepness factor.
Jo 400 Hz

AZ T o5

1.78 (2-13)

An n = 5 Chebyshev filter with a 0.5-dB ripple will also satisfy the high-pass
requirement. A high-pass transformation can be performed on the normalized low-
pass filter of Figure 6-17a to obtain the circuit of Figure 6-17¢. All resistors have
been replaced with capacitors and vice versa using reciprocal element values.

The normalized high-pass filter is then frequency- and impedance-scaled by multi-
plying all resistors by Z and dividing all capacitors by Z X FSF, where Z is chosen
at 10° and FSF is 277f,, using an £, of 400 Hz. The denormalized high-pass filter is
shown in Figure 6-17d using standard 1-percent resistor values.

(c) The individual low-pass and high-pass filters can now be combined using the
configuration of Figure 6-16a. Since no gain is required, A is set equal to unity.
The value of R is conveniently selected at 10 k(), resulting in the circuit of
Figure 6-17e.

Band-Reject Transformation of Low-Pass Poles. The wideband approach to the design
of band-reject filters using combined low-pass and high-pass networks is applicable to
bandwidths of typically an octave or more. If the separation between cutoffs is insufficient,
interaction in the stopband will occur, resulting in inadequate stopband rejection (see
Figure 2-13).

A more general approach involves normalizing the band-reject requirement and select-
ing a normalized low-pass filter type that meets these specifications. The corresponding
normalized low-pass poles are then directly transformed to the band-reject form and real-
ized using active sections.

A band-reject transfer function can be derived from a low-pass transfer function by sub-
stituting the frequency variable f by a new variable given by

S S
N f

This transformation combines the low-pass to high-pass and subsequent band-reject
transformation discussed in Section 6.1 so that a band-reject filter can be obtained directly
from the low-pass transfer function.

The band-reject transformation results in two pairs of complex poles and a pair of second-
order imaginary zeros from each low-pass complex pole pair. A single low-pass real pole
is transformed into a complex pole pair and a pair of first-order imaginary zeros. These rela-
tionships are illustrated in Figure 6-18. The zeros occur at center frequency and result from
the transformed low-pass zeros at infinity.

The band-reject pole-zero pattern of Figure 6-18a corresponds to two band-reject sec-
tions where each section provides a zero at center frequency and also provides one of the

pole pairs. The pattern of Figure 6-18b is realized by a single band-reject section where the
zero also occurs at the center frequency.

Jor = (6-32)
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FIGURE 6-18 The band-reject transformation of low-pass poles: (a) low-
pass complex pole pair; and (b) low-pass real pole.

To make the low-pass to band-reject transformation, first compute

fo

Oy = BW (6-33)
where f is the geometric center frequency and BW is the passband bandwidth. The trans-
formation then proceeds as follows in the next section for complex poles and real poles.

Complex Poles. The tables of Chapter 11 contain tabulated poles corresponding to the
all-pole low-pass filter families discussed in Chapter 2. Complex poles are given in the
form —a * jf, where « is the real coordinate and 3 is the imaginary part. Given «, 8, O, ,
and f;,, the following computations [see Equations (6-34) through (6-44)] result in two sets
of values for Q and frequency which defines two band-reject filter sections. Each section
also has a zero at f;,.

C=a’+p° (6-34)

o
D= 6-35
0,C (6-35)

B
E-= 6-36
F=E>-D>+4 (6-37)

— E E 252

G—\/2+ L T DE (6-38)
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_ DE
=" (6-39)
K = %\/(D + H? + (E + Gy (6-40)
_ K
=D+ H 6-4D)
i
fu=% (6-42)
f» = Kf, (6-43)
=1 (6-44)

The two band-reject sections have resonant frequencies of f,, and f,, (in hertz) and iden-
tical Qs given by Equation (6-41). In addition, each section has a zero at f;, the filter geo-
metric center frequency.

Real Poles. A normalized low-pass real pole having a real coordinate of « is trans-
formed into a single band-reject section having a Q given by

0 = 0, (6-45)

This section resonant frequency is equal to f;,. The section must also have a transmission
zero at f;.

Example 6-7 Calculating Pole and Zero Locations for a Band-Reject Filter

Required:
Determine the pole and zero locations for a band-reject filter having the following spec-
ifications:

A center frequency of 3600 Hz
3dBat £150 Hz
40-dB minimum at =30 Hz

Result:

(a) Since the filter is narrow, the requirement can be treated directly in its arithmeti-
cally symmetrical form:

fo = 3600 Hz
BW, ,; = 300 Hz
BW,, ;s = 60 Hz
The band-reject steepness factor is given by

__ passband bandwidth 300 Hz
s~ stopband bandwidth ~ 60 Hz

=5 (2-20)

(b) An n = 3 Chebyshev normalized low-pass filter having a 0.1-dB ripple is selected
using Figure 2-42. The corresponding pole locations are found in Table 11-23 and are
—0.3500 £ j0.8695
—0.6999
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First, make the preliminary computation using

fo 3600 Hz
O = BW,,; 300Hz 12 (6-33)

The low-pass to band-reject pole transformation is performed as follows:

Complex-pole transformation:

a = 03500 B = 0.8695

C = o? + B2 = 0.878530 (6-34)
o
D = = 0.033199 6-35
0,C (6-35)
E = P = 0.082477 (6-36)
o,C
F = E? — D? + 4 = 4.005700 (6-37)
\/ \ /7 + D?E? = 2.001425 (6-38)
H = ? = 0.001368 (6-39)
= %\/ (D + HY + (E + G = 1.042094 (6-40)
__ K _
0= D+H 30.15 (6-41)
fo
fu = 7 = 3455 Hz (6-42)
[ = Kfo = 3752 Hz (6-43)
fo. = fo = 3600 Hz (6-44)
Real-pole transformation:
a, = 0.6999
0 = Q,a, = 840 (6-45)

f.=f. =f, = 3600Hz

The block diagram is shown in Figure 6-19.

f, = 3455 Hz f, = 3752 Hz f, = 3600 Hz
Ino— Q = 3015 Q=30.15 0:840 —oO0ul
fo = 3600 Hz fo = 3600 Hz fp = 3600 Hz

FIGURE 6-19 The block diagram of Example 6-7.
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Narrowband Active Band-Reject Filters. Narrowband active band-reject filters are
designed by first transforming a set of normalized low-pass poles to the band-reject form.
The band-reject poles are computed in terms of resonant frequency f,, Q, and f, using the
results of section 6.2 and are then realized with active band-reject sections.

The VCVS Band-Reject Section. Complex low-pass poles result in a set of band-reject
parameters where f, and f,, do not occur at the same frequency. Band-reject sections are
then required that permit independent selection of f, and f,, in their design procedure. Both
the VCVS and biquad circuits covered in Section 5.2 under “Elliptic-Function Bandpass
Filters” have this degree of freedom.

The VCVS realization is shown in Figure 6-20. The design equations were given in
Section 5.2 under. “Elliptic-Function Bandpass Filters” and are repeated here for conve-
nience, where f,, O, and f,, are obtained by the band-reject transformation procedure of
Section 6.2. The values are computed as follows:

First, calculate

(6-46)

Cy
]
BRI
Ry Rz ~
AAA ANN—
R4° Out
Ino—4 L +
C3 C4
R3

I Cz Rap

= ®) = =
FIGURE 6-20 A VCVS realization for band-reject filters: (a) circuit for K > 1; and
(b) circuit for K < 1.
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(7)
b=|=> 6-47
7 ( )
¢ = 2mf, (6-48)
Select C, then c,=C (6-49)
o
C,=C, = 5 (6-50)
Cl(b =D
= 1 (6-51)
R =—1 (6-52)
’ cCl\/l;
R, =R, = 2R, (6-53)
R, = 4Vh (6-54)
4 eC(1 = b) + 4cC,
26, a 2 ( 1 )
K=2+—— + — — aC 6-55
G Vb o Vp\eRe T (32
Ry =R and R, = (K- DR (6-56)

where R can be arbitrarily chosen.
The circuit of Figure 6-20a is used when K > 1. In the cases where K < 1, the config-
uration of Figure 6-200 is utilized, where

R,, = (1 — KR, (6-57)

and R,, = KR, (6-58)
The section gain at DC is given by

Section gain = — O 6-59

ection gain = m (6-59)

The gain of the composite filter in the passband is the product of the DC gains of all the
sections.

The VCVS structure has a number of undesirable characteristics. Although the circuit
Q can be adjusted by making R, or R, variable when K > 1, the Q cannot be independently
measured since the 3-dB bandwidth at the output is affected by the transmission zero.
Resonant frequency f, or the notch frequency f,, cannot be easily adjusted since these para-
meters are determined by the interaction of a number of elements. Also, the section gain is
fixed by the design parameters. Another disadvantage of the circuit is that a large spread in
capacitor values* may occur so that standard values cannot be easily used. Nevertheless,
the VCVS realization makes effective use of a minimum number of operational amplifiers
in comparison with other implementations and is widely used. However, because of its lack
of adjustment capability, its application is generally restricted to Qs below 10 and with
1-percent component tolerances.

*The elliptic-function configuration of the VCVS uniform capacitor structure given in Section 3.2 can be used
at the expense of additional sensitivity.
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In O——AA\—4 3 R, R'
| R
2
fo>fr fo<fr
Lo-=—— gl
R R R
% ] Rs
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FIGURE 6-21 biquad band-reject realization.

The State-Variable Band-Reject Section. The biquad or state-variable elliptic-function
bandpass filter section discussed in Section 5.2 is highly suitable for implementing band-
reject transfer functions. The circuit is given in Figure 6-21. By connecting resistor R to
either node 1 or node 2, the notch frequency £, will be located above or below the pole res-
onant frequency f,.

Section Qs of up to 200 can be obtained. The design parameters f,, O, and f,,, as well as
the section gain, can be independently chosen, monitored, and adjusted. From the point of
view of low sensitivity and maximum flexibility, the biquad approach is the most desirable
method of realization.

The design equations were stated in Section 5.2 under “Elliptic-Function Bandpass
Filters” and are repeated here for convenience, where f,, O, and f,, are given and the values
of C, R, and R’ can be arbitrarily chosen.

I ¢
R, =R, = 2mfC (6-60)
R,
R, =R, = 5 (6-61)
fiR
Ri=——+ (6-62)
Tooln -
[iR
for f,, > f: Re = — (6-63)
and when f, < f: Ry = (6-64)
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The value of Ry is based on unity section gain at DC. The gain can be raised or lowered
by proportionally increasing or decreasing R.

Resonance is adjusted by monitoring the phase shift between the section input and node
3 using a Lissajous pattern and adjusting R, for 180° phase shift with an input frequency
of f.

The Q is controlled by R, and can be measured at node 3 in terms of section 3-dB band-
width, or R, can be adjusted until unity gain occurs between the input and node 3 with f,
applied. Because of the Q-enhancement effect discussed in Section 5.2 under “All-Pole
Bandpass Configuration,” a Q adjustment is usually necessary.

The notch frequency is then determined by monitoring the section output for a null.
Adjustment is normally not required since the tuning of f, will usually bring in f, with accept-
able accuracy. If an adjustment is desired, Ry can be made variable.

Sections for Transformed Real Poles. 'When areal pole undergoes a band-reject trans-
formation, the result is a single pole pair and a single set of imaginary zeros. Complex poles
resulted in two sets of pole pairs and two sets of zeros. The resonant frequency f, of the
transformed real pole is exactly equal to the notch frequency f., thus the design flexibility
of the VCVS and biquad structures is not required.

A general second-order bandpass transfer function can be expressed as

w,
)

0

w

r

0

where the gain is unity at w,. If we realize the circuit of Figure 6-22 where 7(s) corresponds
to the above transfer function, the composite transfer function at the output is given by

T(s) =
s+

(6-65)
s + w?

$2 + w?
T(s) = T (6-66)
sz + ars + wf

This corresponds to a band-reject transfer function having a transmission zero at f, (that
is, f., = f.). The occurrence of this zero can also be explained intuitively from the structure
of Figure 6-22. Since 7(s) is unity at f,, both input signals to the summing amplifier will
then cancel, resulting in no output signal.

These results indicate that band-reject sections for transformed real poles can be obtained
by combining any of the all-pole bandpass circuits of section 5.2 in the configuration of
Figure 6-22. The basic design parameters are the required f, and Q of the band-reject section,
which are directly used in the design equations for the bandpass circuits.

By combining these bandpass sections with summing amplifiers, the three band-
reject structures of Figure 6-23 can be derived. The design equations for the bandpass
sections were given in Section 5.2 and are repeated here where C, R, and R’ can be arbi-
trarily chosen.

Ino T(s) -1

z Out
+1

FIGURE 6-22 The band-reject configuration for
f=re
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FIGURE 6-23 The band-reject circuits for f, = f.: (a) MFBP band-reject section (Q < 20);
(b) DABP band-reject section (Q < 150); and (c) biquad band-reject section (Q < 200).
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The MFBP band-reject section (f, = f.)) is given by

R, = ?QrC (6-67)
R,
R,=~ (6-68)
Rla
R, = W (6-69)
The DABP band-reject section (f, = f.)) is given by
R, = ZW%C (6-70)
R,
R, =Ry = 0 (6-71)
The biquad band-reject section (f, = f.)) is given by
R, =R, = % (6-72)
Rl
R, =R, = 0 (6-73)

These equations correspond to unity bandpass gain for the MFBP and biquad circuits
so that cancellation at f, will occur when the section input and bandpass output signals are
equally combined by the summing amplifiers. Since the DABP section has a gain of 2 and
has a noninverting output, the circuit of Figure 6-23b has been modified accordingly so that
cancellation occurs.

Tuning can be accomplished by making R,, R,, and R; variable in the MFBP, DABP,
and biquad circuits, respectively. In addition, the biquad circuit will usually require R, to
be made adjustable to compensate for the Q-enhancement effect (see Section 5.2 under
“All-Pole Bandpass Configurations”). The circuit can be tuned by adjusting the indicated
elements for either a null at f, measured at the circuit output or for 0° or 180° phase shift at
/. observed between the input and the output of the bandpass section. If the bandpass sec-
tion gain is not sufficiently close to unity for the MFBP and biquad case, and 2 for the
DABP circuit, the null depth may be inadequate.

Example 6-8 Design of an Active Band-Reject Filter

Required:
Design an active band-reject filter from the band-reject parameters determined in
Example 6-7 having a gain of +6 dB.

Result:

(a) The band-reject transformation in Example 6-7 resulted in the following set of
requirements for a three-section filter:

Section I 0 fe
1 3455 Hz 30.15 3600 Hz
2 3752 Hz 30.15 3600 Hz
3 3600 Hz 8.40 3600 Hz
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(b) Two biquad circuits in tandem will be used for sections 1 and 2 followed by a
DABP band-reject circuit for section 3. The value of Cis chosen at 0.01 wF, and R,
as well as R, at 10 k). Since the DABP section has a gain of 2 at DC, which satis-
fies the 6-dB gain requirement, both biquad sections should then have unity gain.
The element values are determined as follows:

Section 1 (biquad of Figure 6-21):

£ =3455Hz Q =30.15 f, = 3600Hz

e 2 _ 30.15 B
Ry = R = 5a7C = 2m x 3455 x 108 1389 kQ (6-60)
. _ R 1389 x10°
Ry=Ry="5=""3515 = 46100 (6-61)
2R 2 4
R, = I _ 3455% X 10 _ 38700 6-62)
Olr2 — 2| 30.15/|3455% — 36007
2R 2 4

o 2 36002
Section 2 (biquad of Figure 6-21):

f.=3152Hz Q = 30.15 f, = 3600 Hz

R, =R, = 127.9kQ (6-60)
R, = Ry = 4240 Q (6-61)
Ry = 4180 Q (6-62)
R, = 10k (6-64)

Section 3 (DABP of Figure 6-23):

f.=f =3600Hz Q = 840

o 8.40 -
Ry = 2af,C 27 X 3600 X 1078 371k (6-70)
R 3
R =R = =301X100_ 150 (6-71)

0 8.40

The final circuit is shown in Figure 6-24 with standard 1-percent resistor values.
The required resistors have been made variable so that the resonant frequencies can
be adjusted for all sections and, in addition, the Q is variable for the biquad circuits.

Active Null Networks. Active null networks are single sections used to provide attenua-
tion at a single frequency or over a narrow band of frequencies. The most popular sections
are of the twin-T form, so this circuit will be discussed in detail along with some other
structures.

The Twin-T. The twin-T was first discovered by H. W. Augustadt in 1934. Although
this circuit is passive by nature, it is also used in many active configurations to obtain a vari-
ety of different characteristics.

The circuit of Figure 6-25a is an RC bridge structure where balance or an output null
occurs at 1 rad/s when all arms have an equal impedance (0.5 — j0.5 ). The circuit is
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4120 Q 1kQ
NN\
100 kQ
909 k2
001 uF
————1 0.01 #F

140 kQ
In - 4640 10 k)
: _
= +

10 k2 1o kQ 3830 0 = 9304
Section 1
3740 Q 1kQ
AAA
100 kf
¢ ;
732 kQ
0.C1 uF
t— ——t 001 ,LF
127 k2
) 4220 Q 10 k&1
10 kQ
4220
%10 kQ 10 kQ = 10 kQ
Section 2
10 kQ
10 kQ
Out
T 001 uF
= Section 3

FIGURE 6-24 The band-reject filter of Example 6-8.
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05 Q \F

03
0 4
10 1Q
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FIGURE 6-25 A derivation of the twin-T: (a) RC bridge; (b) lattice circuit; (c) parallel lattice; (d) twin-T
equivalent; and (e) general form of twin-T.

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2006 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.



BAND-REJECT FILTERS

274 CHAPTER SIX

redrawn in the form of a symmetrical lattice in Figure 6-25b (refer to Guillemin and Stewart
in Bibliography for detailed discussions of the lattice). The lattice of Figure 6-25b can be
redrawn again in the form of two parallel lattices, as shown in Figure 6-25c¢.

If identical series elements are present in both the series and shunt branches of a lattice,
the element may be extracted and symmetrically placed outside the lattice structure. A 1-Q)
resistor satisfies the requirement for the upper lattice, and a 1-F capacitor for the lower lattice.
Removal of these components to outside the lattice results in the twin-T of Figure 6-25d.

The general form of a twin-T is shown in Figure 6-25¢. The value of R, is computed from

1
R =5arc

where C is arbitrary. This denormalizes the circuit of Figure 6-25d so that the null now
occurs at f, instead of at 1 rad/s.

When a twin-T is driven from a voltage source and terminated in an infinite load,* the
transfer function is given by

(6-74)

2 2
7+ wp

) = $2 + dawys + w?

(6-75)

If we compare this expression with the general transfer function of a second-order pole-
zero section as given by Equation (6-66), we can determine that a twin-T provides a notch
at f, with a Q of %. The attenuation at any bandwidth can be computed by

4\
Agy = 10log| 1+ gy (6-76)

The frequency response is shown in Figure 6-26, where the requirement for geometric
symmetry applies.

Twin-T with Positive Feedback The twin-T has gained widespread usage as a general-
purpose null network. However, a major shortcoming is a fixed Q of 1/4. This limitation can
be overcome by introducing positive feedback.

The transfer function of the circuit of Figure 6-27a can be derived as

B
1+KQB -1

T(s) = (6-77)

If B is replaced by Equation (6-75), the transfer function of a twin-T, the resulting cir-
cuit transfer function expression becomes

T sz + a)g 6.78
) = T Gyl — K)s + 2 (6-78)
The corresponding Q is then
- 1
0= 41 — K) (6-79)

By selecting a positive K of < 1 and sufficiently close to unity, the circuit Q can be dra-
matically increased. The required value of K can be determined by
1

K=1- 10 (6-80)

*Since the source and load are always finite, the value of R should be in the vicinity of V' R R,, provided that
the ratio R, /R, is in excess of 10.
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FIGURE 6-26 The frequency response of a twin-T.

The block diagram of Figure 6-27a can be implemented using the circuit of Figure 6-27b,
where R is arbitrary. By choosing C and R so that R, >> (1 — K)R, the circuit may be sim-
plified to the configuration of Figure 6-27¢, which uses only one amplifier.

The attenuation at any bandwidth is given by

f 2
Ap = 1010g|:1 + (m) :| (6-81)

Equation (6-81) is the general expression for the attenuation of a single band-reject sec-
tion where the resonant frequency and notch frequency are identical (that is, f, = f.)). The
attenuation formula can be expressed in terms of the 3-dB bandwidth as follows:

A 101 {1 + (B%dB)Q} (6-82)
= 0 -
dB g Bw'(dB

The attenuation characteristics can also be determined from the frequency-response
curve of a normalized n = 1 Butterworth low-pass filter (see Figure 2-34) by using the
ration BW; ;;/BW . for the normalized frequency.

The twin-T in its basic form or in the positive-feedback configuration is widely used for
single-section band-reject sections. However, it suffers from the fact that tuning cannot be
easily accomplished. Tight component tolerances may then be required to ensure sufficient
accuracy of tuning and adequate notch depth. About a 40- to 60-dB rejection at the notch
could be expected using 1-percent components.

Example 6-9 Designing a Twin-T Band-Reject Filter Using Positive Feedback

Required:
Design a single null network having a center frequency of 1000 Hz and a 3-dB band-
width of 100 Hz. Also determine the attenuation at the 30-Hz bandwidth.
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FIGURE 6-27 Twin-T with positive feedback: (a) block diagram; () circuit realization; and (c) simplified
configuration R, >> (1 — K)R.

Result:
(a) A twin-T structure with positive feedback will be used. To design the twin-T, first
choose a capacitance C of 0.01wF. The value of R, is given by
__ L 1
2@fC 27 X 10° X 1078
(b) The required value of K for the feedback network is calculated from

Loy 1
K=1=3=1""1x10

R, = 159kQ (6-74)

= 0.975 (6-80)

where Q = f,/BW; 4s.

(¢) The single amplifier circuit of Figure 6-27¢ will be used. If R is chosen at 1 k(), the
circuit requirement for R, >> (1 — K)R is satisfied. The resulting section is shown
in Figure 6-28.
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FIGURE 6-28 The twin-T network of Example 6-9.

(d) To determine the attenuation at a bandwidth of 30 Hz, calculate

BW; 45\? 100 Hz \?
Ay = IOIOg{l + (BdeBH = 1010g{1 + (30 o, = 10.8dB  (6-82)

Bandpass Structure Null Networks. Section 6.2 under “Narrowband Active Band-
Reject Filters” showed how a first-order bandpass section can be combined with a summing
amplifier to obtain a band-reject circuit for transformed real poles, where f. = f,. Three
types of sections were illustrated in Figure 6-23, corresponding to different Q ranges of
operation. These same sections can be used as null networks. They offer more flexibility
than the twin-T since the null frequency can be adjusted to compensate for component tol-
erances. In addition, the DABP and biquad circuits permit Q adjustment as well.

The design formulas were given by Equations (6-67) through (6-73). The values of f,
and Q in the equations correspond to the section center frequency and Q, respectively.

Frequently, a bandpass and band-reject output are simultaneously required. A typical
application might involve the separation of signals for comparison of in-band and out-of-
band spectral energy. The band-reject sections of Figure 6-23 can each provide a bandpass
output from the bandpass section along with the null output signal. An additional feature of
this technique is that the bandpass and band-reject outputs will track.
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CHAPTER 7

NETWORKS FOR THE TIME
DOMAIN

7.1 ALL-PASS TRANSFER FUNCTIONS

Up until now, the networks we’ve discussed were used to obtain a desired amplitude ver-
sus frequency characteristic. No less important is the all-pass family of filters. This class of
networks exhibits a flat frequency response but introduces a prescribed phase shift versus
frequency. All-pass filters are frequently called delay equalizers.

If a network is to be of an all-pass type, the absolute magnitudes of the numerator and
denominator of the transfer function must be related by a fixed constant at all frequencies.
This condition will be satisfied if the zeros are the images of the poles. Since poles are
restricted to the left-half quadrants of the complex frequency plane to maintain stability, the
zeros must occur in the right-half plane as the mirror image of the poles about the jw axis.
Figure 7-1 illustrates the all-pass pole-zero representations in the complex frequency plane
for first-order and second-order all-pass transfer functions.

First-Order All-Pass Transfer Functions

The real pole-zero pair of Figure 7-1a has a separation of 2¢, between the pole and zero
and corresponds to the following first-order all-pass transfer function:

§ — Qg

T(s) = 7-1
) = 5 a (7-1)
To determine the absolute magnitude of 7(s), compute
s —a| Vot
|7(9)| = - =1 (7-2)

|s + a0| \/a(z) + w?

where s = jw. For any value of frequency, the numerator and denominator of Equation
(7-2) are equal, so the transfer function is clearly all-pass and has an absolute magnitude of
unity at all frequencies.

The phase shift is given by

B(w) = —2tan"! o% (7-3)

where B(w) is in radians.

279
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FIGURE 7-1 All-pass pole-zero patterns: (a) first-order all-pass transfer function; and
(b) second-order all-pass transfer function.

The phase shift versus the ratio w/e, as defined by Equation (7-3), is plotted in Fig-
ure 7-2. The phase angle is 0° at DC and —90° at @ = «,. The phase shift asymptotically
approaches — 180° with increasing frequency.

The group delay was defined in Section 2.2, under “Effect of Nonuniform Time Delay,”
as the derivative of the phase shift which results in

dp) 2
do a + w?

T, = (7-4)

If Equation (7-4) is plotted with respect to w for different values of «, a family of curves
is obtained, as shown in Figure 7-3. First-order all-pass sections exhibit maximum delay at
DC and decreasing delay with increasing frequency. For small values of «, the delay
becomes large at low frequencies and decreases quite rapidly above this range. The delay
at DC is found by setting w equal to zero in Equation (7-4), which results in

2
7,(DC) = & (7-5)
-1801
w —1351
¢
=4
8 -90F
RS
0 1 i 1
001 01 10 100
v
o

FIGURE 7-2 The phase shift of a first-order all-pass section.
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FIGURE 7-3 Group delay of first-order all-pass
transfer functions.

Second-Order All-Pass Transfer Functions

The second-order all-pass transfer function represented by the pole-zero pattern of Fig-
ure 7-1b is given by

2 @, + w?

s?— —=s5s+w

_ Y '
T(s) = @ (7-6)

2+ — s + o?

Q r

where w, and Q are the pole resonant frequency (in radians per second) and the pole Q.
These terms may also be computed from the real and imaginary pole-zero coordinates of
Figure 7-1b by

0 =V + B (7-7)

w

'

and 0= 2a, (7-8)

The absolute magnitude of 7(s) is found to be

(0 — o) +
|T(s)| = =1 (7-9)

2.2
N

which is all-pass.
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The phase shift in radians is

Blw) = —2tan"! (7-10)

and the group delay is given by

2Qwr(w2 + wf)
T et~ ) + e 1

The phase and delay parameters of first-order transfer functions are relatively simple to
manipulate since they are a function of a single design parameter «,. A second-order type,
however, has two design parameters, O and w,.

The phase shift of a second-order transfer function is —180° at w = w,. At DC, the
phase shift is zero and at frequencies well above w, the phase asymptotically approaches
—360°.

The group delay reaches a peak which occurs very close to w,. As the Q is made larger,
the peak delay increases, the delay response becomes sharper, and the delay at DC decreases,
as shown in Figure 7-4.

The frequency of maximum delay is slightly below w, and is expressed in radians per

second by
(L) = @A/ \/4 — é -1 (7-12)

For all practical purposes, the maximum delay occurs at w, for Os in excess of 2. By set-
ting @ = w, in Equation (7-11), the delay at w, is given by

40 20
gd,max = (,ur = ?fr (7'13)
High Q

Tqa

|
we

~— W

FIGURE 7-4 Group delay of second-order all-pass
transfer functions.
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If we set w = 0, the delay at DC is found from

2 1

1PO = 00, = Oy,

(7-14)

7.2 DELAY EQUALIZER SECTIONS

Passive or active networks that realize first- or second-order all-pass transfer functions are
called delay equalizers, since they are normally used to provide a required delay charac-
teristic without disturbing the amplitude response. All-pass networks can be realized in a
variety of configurations both passive and active. Equalizers with adjustable characteristics
can also be designed, and are discussed in Section 7.6.

LC All-Pass Structures

First-Order Constant-Resistance Circuit. The lattice of Figure 7-5a realizes a first-
order all-pass transfer function. The network is also a constant-resistance type, which
means that the input impedance has a constant value of R over the entire frequency range.
Constant-resistance networks can be cascaded with no interaction so that composite delay
curves can be built up by accumulating the individual delay contributions. The lattice has
an equivalent unbalanced form shown in Figure 7-5b. The design formulas are given by

2R

L=4% (7-15)
)

€=k (7-16)

where R is the desired impedance level and «, is the real pole-zero coordinate. The phase
shift and delay properties were defined by Equations (7-3) through (7-5).

The circuit of Figure 7-5b requires a center-tapped inductor having a coefficient of mag-
netic coupling K equal to unity.

Second-Order Constant-Resistance Sections. A second-order all-pass lattice with
constant-resistance properties is shown in Figure 7-6a. The circuit may be transformed into
the unbalanced bridged-T form of Figure 7-6b. The elements are given by

_ 2R
L,= 0 (7-17)
0
Ca—ﬁ (7-18)
R L
0{0 r——/bﬁ
4 P
R— ] <“—R R — C <+—R
/ R
o—o ———
() (b)

FIGURE 7-5 First-order LC equalizer section: (a) lattice form; and (b) unbalanced form.
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_9R
Ly = 3 (7-19)
2
c -0 (7-20)

P w(0* - DR

For tuning and test purposes, the section can be split into parallel and series resonant
branches by opening the shunt branch and shorting the bridging or series branch, as shown
in Figure 7-6¢. Both circuits will resonate at w,.

The T-to-pi transformation was first introduced in Section 4.1. This transformation may
be applied to the T of capacitors that are embedded in the section of Figure 7-6b to reduce
capacitor values if desired. The resulting circuit is given in Figure 7-6d. Capacitors C, and
C, are computed as follows:

CZ
C = 72@ +C, (7-21)
Lo
YL
o—1 —O
Co Cq
C
R — o - R
Lp
o -0
(b)

LO
LQ
Cy
c —
C C
c 2 2
~F rij
Ca Cz
Ly
Lb
(© @ (e)

FIGURE 7-6 Second-order section Q > 1: (a) lattice form; (b) unbalanced form; (c) circuit for measuring
branch resonances; (d) circuit modified by a T-to-pi transformation; and (e) resonant branches of modified
circuit.
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€5 7-22
G = 2C, + C, (7-22)

The branch resonances are obtained by opening the shunt branch and then shorting the
bridging branch, which results in the parallel and series resonant circuits of Figure 7-6e.
Both resonances occur at w,.

Close examination of Equation (7-20) indicates that C, will be negative if the Q is
less than 1. (If Q = 1, C, can be replaced by a short.) This restricts the circuits of Figure
7-6 to those cases where the Q is in excess of unity. Fortunately, this is true in most
instances.

In those cases where the Q is below 1, the configurations of Figure 7-7 are used. The
circuit of Figure 7-7a uses a single inductor with a controlled coefficient of coupling
given by

K; = i ; gz (7-23)
The element values are given by
Ly, = (Q;Q%i)R (7-24)
C = % (7-25)
C, = Q%,R (7-26)

It is not always convenient to control the coefficient of coupling of a coil to obtain the
specific value required by Equation (7-23). A more practical approach uses the circuit of
Figure 7-7b. The inductor L, is center-tapped and requires a unity coefficient of coupling
(typical values of 0.95 or greater can usually be obtained and are acceptable). The values
of Ly, and L, are computed from

Ly, =2(1 + K;)L,, (7-27)
(1 — KL,
= (7-28)
Cs
|1
11
— L3p °
T K=1
La
R —» - R
I C4
o2 : O O T O
@ ()

FIGURE 7-7 Second-order section Q < 1: (a) circuit with a controlled coefficient of coupling; and
(b) circuit with unity coefficient of coupling.
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The sections of Figure 7-7 may be tuned to w, in the same manner as in the equalizers
in Figure 7-6. A parallel resonant circuit is obtained by opening C,, and a series resonant
circuit will result by placing a short across Cj.

The second-order section of Figures 7-6 and 7-7 may not always be all-pass. If the
inductors have insufficient Q, a notch will occur at the resonances and will have a notch
depth that can be approximated by

0, +40

Ay = 201log 0, - 40

(7-29)

where Q, is the inductor Q. If the notch is unacceptable, adequate coil Q must be provided
or amplitude-equalization techniques are used, as discussed in section 8.4.

Minimum Inductor All-Pass Sections. The bridged-T circuit of Figure 7-8 realizes a
second-order all-pass transfer function with a single inductor. The section is not a constant-
resistance type, and operates between a zero impedance source and an infinite load. If the
ratio of load to source is well in excess of 10, satisfactory results will be obtained. The ele-
ments are computed by

0
C= 74w,R (7-30)
and L= . (7-31)
®’C

The value of R can be chosen as the geometric mean of the source and load impedance
( V RSRL). The LC circuit is parallel resonant at o, .

The reader is reminded that the design parameters Q and w, are determined from the
delay parameters defined in Section 7.1, which covers all-pass transfer functions.

A notch will occur at resonance due to a finite inductor Q and can be calculated from

4R + w,LQ,
A = 20log iR - w10, (7-32)
If R is set equal to w,LQ, /4, the notch attenuation becomes infinite and the circuit is then
identical to the bridged-T null network of section 6.1.
Two sets of all pass poles and zeros corresponding to a fourth-order transfer function
can also be obtained by using a minimum-inductance-type structure. The circuit configu-
ration is shown in Figure 7-9.

Ly G
Cz
| L
1 F ©
T L
©
R —
0
FIGURE 7-8 Minimum inductor type, FIGURE 7-9 A fourth-order minimum
second-order section. inductance, all-pass structure.
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Upon being given two sets of equalizer parameters Q,, w,; and Q,, ®,,, as defined in
Section 7.1, the following equations are used to determine the element values:
First, compute

A= w%w,z_z (7-33)
B = A( Lo, 1 > (7-34)

0,0, 0,0,
C = %0 (7-35)

AQy, + Q\,,)

0,0,(0? + %) + w0,
D= 12( 1 2) 1 2_C_ 1 (7-36)
ABQ,0, AB*C
Jo—— (7-37)
ABCD

The element values are then given by

L=>" (7-38)
C, = % (7-39)
L, = 4%’6 (7-40)
C, = % (7-41)

The value of R is generally chosen as the geometric mean of the source and load termi-
nations, as with the second-order minimum-inductance section. The series and parallel
branch resonant frequencies are found from

@picr = \/E7D (7-42)
and Wiy = ﬁ (7—43)

Active All-Pass Structures. First- and second-order all-pass transfer functions can be
obtained by using an active approach. The general form of the active all-pass section is rep-
resented by the block diagram of Figure 7-10, where 7(s) is a first- or second-order transfer
function having a gain of unity.

First-Order Sections. The transfer function of the circuit of Figure 7-10 is given by

out

E.

in

= 27(s) — 1 (7-44)
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In z Out
T(s) +2

FIGURE 7-10 The general form of an active
all-pass section.

If T(s) is a first-order RC high-pass network having the transfer function sCR/(sCR + 1),
the composite transfer function becomes

Eow _ s — 1IRC
E, s+ 1RC

in

(7-45)

This expression corresponds to the first-order all-pass transfer function of Equation (7-1),
where

=L
RC

)

(7-46)

The circuit can be directly implemented by the configuration of Figure 7-11a, where R’ is
arbitrary. The phase shift is then given by

B(w) = —2tan "'wRC (7-47)
and the delay is found from
2RC
T,=—-> 7-4
& (wRC?* + 1 (7-48)
At DC, the delay is a maximum and is computed from
T4DC) = 2RC (7-49)

The corresponding phase shift is shown in Figure 7-2. A phase shift of —90° occurs at
® = 1/RC and approaches —180° and 0° at DC and infinity, respectively. By making the
element R variable, an all-pass network can be obtained having a phase shift adjustable
between 0 and —180°.

A sign inversion of the phase will occur if the circuit of Figure 7-115 is used. The cir-
cuit will remain all-pass and first-order, and the group delay is still defined by Equations
(7-48) and (7-49).

(@ (b)
FIGURE 7-11 First-order all-pass sections: (a) circuit with lagging phase shift; and (b) circuit
with leading phase shift.
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Second-Order Section.  If T(s) in Figure 7-10 is a second-order bandpass network hav-
ing the general bandpass transfer function

w,
=
T(s) = g (7-50)
2+ — 5+ w?
Q r
the composite transfer function then becomes
s2— s+ w?
out Q
5= 2T(s) =1 = ———(—— (7-51)
in 52 + és + o?

which corresponds to the second-order all-pass expression given by Equation (7-6) (except
for a simple sign inversion). Therefore, a second-order all-pass equalizer can be obtained
by implementing the structure of Figure 7-10 using a single active band-pass section for
1(s).

Section 5-2 discussed the MFBP, DABP, and biquad all-pole bandpass sections. Each
circuit can be combined with a summing amplifier to generate a delay equalizer.

The MFBP equalizer is shown in Figure 7-12a. The element values are given by

_ 20 0
2T wC  wfC (7-52)
R
R,=% (7-53)
R
Ry, =—5"— (7-54)
207 — 1

The values of C and R can be arbitrarily chosen, and A in Figure 7-12a corresponds to
the desired gain.

The maximum delay which occurs at f, was given by Equation (7-13). This expression
can be combined with Equations (7-52) and (7-54), so the element values can alternately
by expressed in terms of T, as follows for Q > 2:

d, max
Ta’max
Ry = 3¢ (7-55)
R
R, = 2 (7-56)

(ﬂ-fr];d,mux)z -2

where R, , remains R,/2.

The MFBP section can be tuned by making R, variable. R, can then be adjusted until
180° of phase shift occurs between the input and output of the bandpass section at f,. In order
for the response to be all-pass, the bandpass section gain must be exactly unity at resonance.
Otherwise, an amplitude ripple will occur in the frequency-response characteristic in the
vicinity of f,.
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FIGURE 7-12 The MFBP delay equalizer Q < 20: (a) circuit for 0.707 < Q < 20; and
(b) circuit for Q < 0.707.

The section Q is limited to values below 20, or is expressed in terms of delay, as in the
following:

40
gd.max ?fr (7_5 7)

Experience has indicated that required Qs are usually well under 20, so this circuit will
suffice in most cases. However, if the Q is below 0.707, the value of R, ,,, as given by Equation
(7-54), is negative, so the circuit of Figure 7-12b is used. The value of R, is given by

R,

f o

(7-58)

In the event that higher Qs are required, the DABP section can be applied to the block
diagram of Figure 7-10. Since the DABP circuit has a gain of 2 and is noninverting, the
implementation shown in Figure 7-13 is used. The element values are given by

Q Q

R\ = ¢~ mmc (7-59)
Rl
and Ry=Ry =45 (7-60)

where C, R, and R’ can be conveniently chosen. Resistor R, may be made variable if tuning
is desired. The Q, and therefore the delay, can also be trimmed by making R, adjustable.
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In O—4

Bandpass section

FIGURE 7-13 The DABP delay equalizer Q < 150.

The biquad structure can be configured in the form of a delay equalizer. The circuit is
shown in Figure 7-14, and the element values are computed from

0 0
R, :R“:TC:TTJ”C (7-61)
R,
and R, =Ry = 0 (7-62)
where C, R, and R’ are arbitrary.
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FIGURE 7-14 The biquad delay equalizer Q < 200.
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Resistor R, can be made variable for tuning. The Q is adjusted for the nominal value by
making R, variable and monitoring the 3-dB bandwidth at the output of the bandpass sec-
tion, or by adjusting for unity bandpass gain at f,. The biquad is subject to the Q-enhancement
effect discussed in Section 5.2, under “All-Pole Bandpass Configurations,” so a Q adjust-
ment is usually required.

7.3 DESIGN OF DELAY LINES

The classical approach to the design of delay lines involves a cascade of identical LC sections
(except for the end sections) and uses image-parameter theory (see Wallis in Bibliography).
This technique is an approximation at best.

Modern network theory permits us to predict the delay of networks accurately and to
obtain a required delay in a much more efficient manner than with the classical approach.
The Bessel, linear phase with equiripple error and transitional filters all feature a constant
delay. The curves in Chapter 2 indicate that for n > 3, the flat delay region is extended well
into the stopband. If a delay line is desired, a low-pass filter implementation is not a very
desirable approach from a delay-bandwidth perspective. A significant portion of the con-
stant delay region would be attenuated.

All the low-pass transfer functions covered can be implemented by using an all-pass
realization to overcome the bandwidth limitations. This results in a precise and efficient
means of designing delay lines.

The Low-Pass to All-Pass Transformation

A low-pass transfer function can be transformed to an all-pass transfer function simply by
introducing zeros in the right-half plane of the jw axis corresponding to each pole. If the
real and complex poles tabulated in Chapter 11 are realized using the first- and second-
order all-pass structures of Section 7.2, complementary zeros will also occur. When a low-
pass to all-pass transformation is made, the low-pass delay is increased by a factor of
exactly 2 because of the additional phase-shift contributions of the zeros.

An all-pass delay-bandwidth factor can be derived from the delay curves of Chapter 2,
which is given by

U = 0,1,,(DC) (7-63)

The value of T, (DC) is the delay at DC, which is twice the delay shown in the curves
because of the all-pass transformation, and w, is the upper limit radian frequency where the
delay deviates a specified amount from the DC value.

Table 7-1 lists the delay at DC, w,, and the delay-bandwidth product 7U for an all-pass
realization of the Bessel maximally flat delay family. Values are provided for both 1- and
10-percent deviations of delay at w,,.

To choose a transfer-function type and determine the complexity required, first compute

lereq = 277f:g[17;7d (7'64)
where f,, is the maximum desired frequency of operation and 7, is the nominal delay needed.
A network is then selected that has a delay-bandwidth factor 7U which exceeds TU,,.

Compute the delay-scaling factor (DSF), which is the ratio of the normalized delay at

DC to the required nominal delay. For example:

T,(DC)

F=—— 7-65
T, (7-65)
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TABLE 7-1 All-Pass Bessel Delay Characteristics

1-Percent 10-Percent

Deviation Deviation
N 7, (DC) w, TU w, TU
2 2.72 0.412 1.121 0.801 2.179
3 3.50 0.691 2419 1.109 3.882
4 4.26 0.906 3.860 1.333 5.679
5 4.84 1.120 5421 1.554 7.521
6 5.40 1.304 7.042 1.737 9.380
7 5.90 1.478 8.720 1.912 11.280
8 6.34 1.647 10.440 2.079 13.180
9 6.78 1.794 12.160 2.227 15.100

The corresponding poles of the filter selected are denormalized by the DSF and can then
be realized by the all-pass circuits of Section 7.2.
A real pole « is denormalized by the formula

ay = a, X DSF (7-66)

Complex poles tabulated in the form o + jB are denormalized and transformed into the
all-pass section design parameters w, and Q by the relationships

w, = DSFVa? + B2 (7-67)

w

r

Q = 5.DSF

(7-68)

The parameters a, w, , and Q are then directly used in the design equations for the cir-
cuits of Section 7.2.

Sometimes the required delay-bandwidth factor TU,,, as computed by Equation (7-64),
is in excess of the TU factors available from the standard filter families tabulated. The total
delay required can then be subdivided into N smaller increments, and realized by N delay

lines in cascade, since the delays will add algebraically.

LC Delay Lines. LC delay lines are designed by first selecting a normalized filter type
and then denormalizing the corresponding real and complex poles, all in accordance with
Section 7.3, under “The Low-Pass to All-Pass Transformation.”

The resulting poles and associated zeros are then realized using the LC all-pass circuit
of Section 7.2. This procedure is best illustrated by the following design example.

Example 7-1 Design of a ImS LC Delay Line

Required:
Design a passive delay line to provide 1 ms of delay constant within 10 percent from
DC to 3200 Hz. The source and load impedances are both 10 k().

Result:
(a) Compute the required delay-bandwidth factor.

TU,, = 2mf, T,y = 23200 X 0.001 = 20.1 (7-64)

req
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A linear phase design with an equiripple error of 0.5° will be chosen. The delay
characteristics for the corresponding low-pass filters are shown in Figure 2-64. The
delay at DC of a normalized all-pass network for n = 9 is equal to 7.5 s, which is
twice the value obtained from the curves. Since the delay remains relatively flat to
3 rad/s, the delay-bandwidth factor is given by

U = 0, T.(DC) =3 X 7.5 =225 (7-63)

u'g

Since TU is in excess of TU.

req the n = 9 design will be satisfactory.

(b) The low-pass poles are found in Table 11-45 and are as follows:
—0.5688 = j0.7595

—0.5545 = j1.5089
—0.5179 % j2.2329
—0.4080 = j2.9028

—0.5728

Four second-order all-pass sections and a single first-order section will be required.
The delay-scaling factor is given by

T/DO) 75
Ty 1073

= 7500 (7-65)

The denormalized design parameters w, and Q for the second-order sections are
computed by Equations (7-67) and (7-68), respectively, and are tabulated as follows:

Section a B w, [}
1 0.5688  0.7595 7117 0.8341
2 0.5545  1.5089 12057  1.450
3 05179 22329 17191 2213
4 0.4080  2.9028 21985  3.592

The design parameter «y, for section 5 corresponding to the real pole is found from
ay = ay X DSF = 4296 (7-66)
where o is 0.5728.

(c) The element values can now be computed as follows:

Section 1:
Since the Q is less than unity, the circuit of Figure 7-7b will be used. The element
values are found from

1 -0 1 -0.83412

K, = = = 0.1794 7-2
31402 1+ 0.83412 0-179 (7-23)
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_(Q*+ DR (0.83412 + D)10*

La, 20w, 2% 08341 x 7117 _ 428H (7-24)
9 0.8341 _
G = 20.R 2 % 7117 X 10* 5860 pF (7-25)
C, =2 = 2 = 0.0337 pF (7-26)
4T QR T 08341 X 7117 x 10+ 0P
Ly, = 2(1 + KyL,, = 3.368H (7-27)
(1 — KyL,,
4= = 058H (7-28)

Sections 2 through 4:
Since the Qs are in excess of unity, the circuit of Figure 7-6b will be used. The val-
ues for section 2 are found from

_2R . 2x100
Li= 00 = 12,057 x 1450 ~ 1144H (7-17)
0 1450
€= ok = Ta0s) x 1o = C0120F (7-18)
~ OR 1450 X 10*
L= 15 =5 % 2057 = 0601H (7-19)
2
c, = Q 2X 1450 _ ) oo18puF (7-20)

00> — DR 12,057(1.45" — 1)10*

In the same manner, the remaining element values can be computed, which results in

Section 3:
L,=0.526H
C,=0.0129 uF
L,=0.644H
C, = 6606 pF
Section 4:
L,=0253H
C,=0.0163 uF
L,=03817TH
C, = 2745 pF
Section 5:

The remaining first-order all-pass section is realized using the circuit of Figure 7-5b.
The element values are given by

L= 2R _2X 104
o 4296

=4.655H (7-15)

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2006 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.



NETWORKS FOR THE TIME DOMAIN

-asuodsar Kouanbaiy (q) pue oI urf-Ae[op (v) :1-, ojdwrexd jo oury Ae[op sw-1 oYL, ST-L TANOIA

00ce

@
H

g
sw QO
(e)
ZH 66b€ 74 9¢€.2 ZH 616} ZH €C11
O- H ]
H 2180 H Pv90 H 1090 4" 1£€00
UM Oy 47 9900 49 GvL2 39 9099 37 81200 H 9850 U% Ol
3" €9100[4™ £€9100 347 62100{ 47 62100 37 2000 |47 2100 2
2 _ _ _ _ _ H 89€'C
HssoY AAA AAA AAA i “
H €620 H 9250 L R44Y] 44 098S

296

Any use is subject to the Terms of Use as given at the website.

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2006 The McGraw-Hill Companies. All rights reserved.



NETWORKS FOR THE TIME DOMAIN

NETWORKS FOR THE TIME DOMAIN 297

2 2

C = ==
aR 4296 X 10*

= 0.0466 pF (7-16)

(d) The resulting delay line is illustrated in Figure 7-15a. The resonant frequencies
shown are in hertz, and correspond to w, /27 for each section. The center-tapped
inductors require a unity coefficient of coupling. The delay characteristics as a
function of frequency are also shown in Figure 7-15b.

The delay line of Example 7-1 requires a total of nine inductors. If the classical design
approach (see Wallis in Bibliography), which is based on image-parameter theory, were
used, the resulting delay line would use about twice as many coils. Although the inductors
would all be uniform in value (except for the end sections), this feature is certainly not jus-
tified by the added cost and complexity.

Active Delay Lines. An active delay line is designed by initially choosing a normalized
filter and then denormalizing the associated poles in the same manner as in the case of LC
delay lines. The resulting all-pass design parameters are implemented using the first- and
second-order active structures of Section 7.2.

Active delay lines do not suffer from the Q limitations of LC delay lines and are espe-
cially suited for low-frequency applications where inductor values may become impracti-
cal. The following example illustrates the design of an active delay line.

Example 7-2 Design of a 100 uS Active Delay Line

Required:
Design an active delay line having a delay of 100 s constant within 3 percent to 3 kHz.
A gain of 10 is also required.

Result:
(a) Compute the required delay-bandwidth factor.
TU,, = 2mf, T, = 23000 X 107 = 1.885 (7-64)

A Bessel-type all-pass network will be chosen. Table 7-1 indicates that for a delay
deviation of 1 percent, a complexity of n = 3 has a delay-bandwidth factor of 2.419,
which is in excess of the required value.

(b) The Bessel low-pass poles are given in Table 12-41 and the corresponding values
forn = 3 are

—1.0509 £ ;1.0025
—1.3270

Two sections are required consisting of a first-order and second-order type. The
delay-scaling factor is computed to be

T (DC)

gd 3.5

—_— = = 3.5 X 10* 7-65
7;;01 1074 ( )
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where T,,(DC) is obtained from Table 7-1 and 7, is 100 s, the design value.
The second-order section design parameters are

o, = DSFVa? + B> = 3.5 X 10*V1.0509% + 1.0025% = 50,833 (7-67)

(&) 50,833

and Q= 2aDSF ~ 2% 1509 x 35 x 100 ! (7-68)
The first-order section design parameter is given by
a = ay X DSF = 1.327 X 3.5 X 10* = 46,450 (7-66)

(c) The element values are computed as follows:

The second-order section:

The MFBP equalizer section of Figure 7-12b will be used corresponding to
0 < 0.707, where R = 10 k(), C = 0.01 pwF, and A = 10. The element values are
found from

20 2 X 0.691
Ry =——=—"""""  =92719Q 7-52
2 oC 50,833 %108 ? (7-52)

R, 2719
R =———=—"""2"" = 1424 () -
40?7 4 X 0.6912 (7-58)

The first-order section:
The first-order section of Figure 7-11a will be used, where R’ is chosen at 10 k),
Cat 0.01 wF, and o is 46,450. The value of R is given by

1 1

R = - r
a)C ~ 46,450 X 10~°

=2153Q (7-46)

(d) The resulting 100-ps active delay line is shown in Figure 7-16 using standard
1-percent resistor values.
001 uF
2740 Q
1430 0 1008
oo 4750 0 10 k2
e VvV 10 kQ
In -
Out
- PJ ] )
= 0.01 uF
2150

FIGURE 7-16 The 100-ps delay line of Example 7-2.
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7.4 DELAY EQUALIZATION OF FILTERS

The primary emphasis in previous chapters has been the attenuation characteristics of fil-
ters. However, if the signal consists of a modulated waveform, the delay characteristics are
also of importance. To minimize distortion of the input signal, a constant delay over the fre-
quency range of interest is desirable. Typically, this would be 6 dB or so. The greater the
attenuation, the less significant the impact of delay variation (delay distortion) since the
spectral contributions of the attenuated signals are reduced.

The Bessel, linear phase with equiripple error, and transitional filter families all exhibit a flat
delay. However, the amplitude response is less selective than that of other families. Frequently,
the only solution to an attenuation requirement is a Butterworth, Chebyshev, or elliptic-
function filter type. To also maintain the delay constant, delay equalizers would be required.

It is important to recognize that there are trade-offs between steep attenuation require-
ments and flatness of delay. For example, the higher the ripple of a Chebyshev filter, the
steeper the rate of attenuation, but also the larger the delay deviation from flatness, espe-
cially around the corner frequency. Delay distortion also grows larger with increasing order
n and steepness of elliptic function filters, as well as ripple. Steep elliptic function filters
and high-order Chebyshev filters (see Section 2.4) are especially difficult to equalize since
their delay characteristics near cutoff exhibit sharp delay peaks (horn-like in appearance).

Delay equalizer networks are frequently at least as complex as the filter being equalized.
The number of sections required is dependent on the initial delay curve, the portion of the
curve to be equalized, and the degree of equalization necessary. A very crude approxima-
tion to the number of equalizer sections required is given by

n=2AuA, + 1 (7-69)

where Ay, is the bandwidth of interest in hertz, and A, is the delay distortion over Agy, in
seconds.

The approach to delay equalization discussed in this section is graphical rather than ana-
lytical. A closed-form solution to the delay equalization of filters is not available. However,
computer programs can be obtained that achieve a least-squares approximation to the
required delay specifications, and are preferred to trial-and-error techniques. (See Note 1.)

Simply stated, delay equalization of a filter involves designing a network that has a
delay shape which complements the delay curve of the filter being equalized. The com-
posite delay will then exhibit the required flatness. Although the absolute delay increases
as well, this result is usually of little significance, since it is the delay variation over the
band of interest that disperses the spectral components of the signal. Typical delay curves
of a bandpass filter, the delay equalizer network, and the composite characteristics are
shown in Figure 7-17.

To equalize the delay of a low-pass filter graphically, the highest frequency of interest and
corresponding delay should be scaled to 1 rad/s so that the lower portion of the curve falls
within the frequency region between DC and w = 1. This is accomplished by multiplying the
delay axis by 2arf,, where f;, is the highest frequency to be equalized. The frequency axis is
also divided by f;, and interpreted in radians per second so that f; is transformed to 1 rad/s and
all other frequencies are normalized to this point.

Note 1: The full version of Filter Solutions available from Nuhertz Technologies®
(www.nuhrtz.com), uses a proprietary approach to automatically perform equalization of
low-pass and bandpass filters. The final results can then be manually “tweaked” by adjusting
the pole-zero locations while observing the changes in group delay in real time.

The normalized low-pass filter delay curves shown in section 2 for the various filter fam-
ilies may also be used directly. In either case, the required equalizer delay characteristic is
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FIGURE 7-17 The delay equalization of a bandpass filter.

obtained by subtracting the delay curve from a constant equal to the maximum delay that
occurs over the band. The resulting curve is then approximated by adding the delay contri-
butions of equalizer sections. A sufficient number of sections is used to obtain the required
composite delay flatness.

When a suitable match to the required curve is found, the equalizer parameters may be
directly used to design the equalizer, and the circuit is then denormalized to the required
frequency range and impedance level. Alternatively, the equalizer parameters can first be
denormalized and the equalizer designed directly.

Bandpass filters are equalized in a manner similar to low-pass filters. The delay curve
is first normalized by multiplying the delay axis by 2#f,, where f; is the filter center fre-
quency. The frequency axis is divided by f;, and interpreted in radians per second so that the
center frequency is 1 rad/s and all other frequencies are normalized to the center frequency.
A complementary curve is found, and appropriate equalizer sections are used until a suit-
able fit occurs. The equalizer is then denormalized.

First-Order Equalizers. First-order all-pass transfer functions were first introduced in Sec-
tion 7.1. The delay of a first-order all-pass section is characterized by a maximum delay at low
frequencies, and decreasing delay with increasing frequency. As the value of «, is reduced, the
delay tends to peak at DC and will roll off more rapidly with increasing frequencies.

The delay of a first-order all-pass section was given in Section 7.1 by

T, 2% 7-4

gd a + o? -4

Working directly with Equation (7-4) is somewhat tedious, so a table of delay values for o,

ranging between 0.05 and 2.00 at frequencies from w = 0 to @ = 1 is provided in Table 7-2.

This table can be directly used to determine the approximate a, necessary to equalize the

normalized filter delay. A more exact value of «;, can then be determined from Equation (7-4)
if desired.
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TABLE 7-2 The First-Order Equalizer Delay in Seconds

w, rad/s

a, 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.05  40.00 8.00 235 1.08 062 040 028 020 0.16 012 0.10
0.10  20.00 10.00 400 200 1.18 0.77 054 040 031 024 0.20
0.15 1333 923 480 267 164 1.10 078 059 045 036 029
020  10.00 800 500 308 200 138 100 075 059 047 038
0.25 8.00 690 488 328 225 1.60 1.18 091 071 057 047

0.30 6.67 6.00 462 333 240 176 133 1.03 082 0.67 0.55
0.35 5.71 528 431 329 248 188 145 1.14 092 075 0.62
0.40 5.00 471 400 320 250 195 154 1.23 1.00  0.82 0.69
0.45 4.44 424 371 308 248 199 160 130 107 0.89 0.75
0.50 4.00 385 345 294 244 200 164 135 .12 094 0.80

0.55 3.04 352 321 280 238 199 1.66 1.39 .17 099 0.84
0.60 333 324 3.00 267 231 1.97 167 141 120  1.03 0.88
0.65 3.08 3.01 2.81 254 223 193 166 142 122 105 0091
0.70 2.86 280 264 241 215 1.89  1.65 1.43 124 1.08 094
0.75 2.67 262 249 230 208 185 1.63 1.43 125 1.09 0.96

0.80 2.50 246 235 219 200 18 160 142 125 1.10 098
0.85 2.35 232 223 209 193 1.75 1.57 140 125 111 099
0.90 222 220 212 200 18 170 154 138 124 111 099
0.95 2.11 208 202 191 179 165 150 136 1.23 1.11 1.00
1.00 2.00 1.98 192 183 172 160 147 134 122 110 1.00

1.25 1.60 1.59 156 151 1.45 138 130 122 114 1.05 098
1.50 1.33 1.33 1.31 128 124 120 1.15 1.09 1.04 098 092
1.75 1.14 1.14 113 1.11 1.09 106 1.02 099 095 090 0.86
2.00 1.00 1.00 099 098 097 094 092 089 086 083 0.80

Use of Table 7-2 is best illustrated by an example, as follows.

Example 7-3 Design of an LC and Active Delay Equalizer for a Low-Pass Filter

Required:
Design a delay equalizer for an n = 5 Butterworth low-pass filter having a 3-dB cutoff
of 1600 Hz. The delay variation should not exceed 75 s from DC to 1600 Hz.

Result:

(a) The Butterworth normalized delay curves of Figure 2-35 can be used directly since
the region between DC and 1 rad/s corresponds to the frequency range of interest.
The curve for n = 5 indicates that the peak delay occurs near 0.9 rad/s and is approx-
imately 1.9 s greater than the value at DC. This corresponds to a denormalized vari-
ation of 1.9/27f,, or 190 ws, where f; is 1600 Hz, so an equalizer is required.

(b) Examination of Table 7-2 indicates that a first-order equalizer with an o, of 0.7 has
adelay at DC that is approximately 1.8 s greater than the delay at 0.9 rad/s, so a rea-
sonable fit to the required shape should occur.
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FIGURE 7-18 The delay equalization of Example 7-3: (a) filter and equalizer
delay curves; (b) composite delay curve; (¢) LC equalizer; and (d) active equalizer.

The delay of the normalized filter and the first-order equalizer for o, = 0.7 is shown
in Figure 7.18a. The combined delay is given in Figure 7-18b. The peak-to-peak delay
variation is about 0.7 s, which corresponds to a denormalized delay variation of 0.7/27f,

or 70 ws.

(c) The first-order equalizer parameter oy = 0.7 is denormalized by the factor 2f),
resulting in oy = 7037. The corresponding passive equalizer is designed as
follows, where the impedance level R is chosen to be 1 k{):

2R 2 X 10°

L= o = 5037 0.284H (7-15)
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2 2

C = = —
aR 7037 X 10°

= 0.284 uF (7-16)

The first-order LC equalizer section is shown in Figure 7-18c.

(d) An active first-order equalizer section can also be designed using the circuit of
Figure 7-11a. If we select a C of 0.1 wF, where R = 10 k() the value of R is given by

1 1
a;,C 7037 X 1077

= 1421Q (7-46)

The active equalizer circuit is illustrated in Figure 7-18d.

Highly selective low-pass filters such as the elliptic-function type have a corresponding
delay characteristic that increases very dramatically near cutoff. First-order all-pass sec-
tions cannot then provide a complementary delay shape, so they are limited to applications
involving low-pass filters of moderate selectivity.

Second-Order Equalizers. First-order equalizers have a maximum delay at DC and a sin-
gle design parameter «;, which limits their use. Second-order sections have two design para-
meters, w, and Q. The delay shape is bandpass in nature and can be made broad or sharp by
changing the Q. The peak delay frequency is determined by the design parameter w,. As a
result of this flexibility, second-order sections can be used to equalize virtually any type of
delay curve. The only limitation is in the number of sections the designer is willing to use,
and the effort required to achieve a given degree of equalization.
The group delay of a second-order all-pass section was given by

2Qwr(w2 + wf)

= (7-11)
s Qz(oz)2 - wf)z + *w?
If we normalize this expression by setting w, equal to 1, we obtain
_ 20(w* + 1)
7:%’0’ - Qz(wz _ 1)2 + w? (7-70)
To determine the delay at DC, we can set equal to zero, which results in
2
1.4P0) = & (7-71)

For Qs below 0.577, the maximum delay occurs at DC. As the Q is increased, the fre-
quency where maximum delay occurs approaches 1 rad/s and is given by

Ty ) = \/W (7-72)

For Qs of 2 or more, the maximum delay can be assumed to occur at 1 rad/s and may be
determined from

ng,max = 4’Q (7-73)
Equations (7-70) through (7-72) are evaluated in Table 7-6 for Qs ranging from 0.25 to 10.
To use Table 7-6 directly, first normalize the curve to be equalized so that the minimum

delay occurs at 1 rad/s. Then, select an equalizer from the table that provides the best fit for

a complementary curve.
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A composite curve is then plotted. If the delay ripple is excessive, additional equalizer
sections are required to fill in the delay gaps. The data of Table 7-6 can again be used by
scaling the region to be equalized to a 1-rad/s center and selecting a complementary equal-
izer shape from the table. The equalizer parameters can then be shifted to the region of
interest by scaling.

The procedure described is an oversimplification of the design process. The equalizer
responses will interact with each other, so each delay region to be filled in cannot be treated
independently. Every time a section is added, the previous sections may require an adjust-
ment of their design parameters.

Delay equalization generally requires considerably more skill than the actual design of
filters. Standard pole-zero patterns are defined for the different filter families, whereas the
design of equalizers involves the approximation problem where a pole-zero pattern must be
determined for a suitable fit to a curve. The following example illustrates the use of sec-
ond-order equalizer sections to equalize delay.

Example 7-4 Design of a Delay Equalizer for a Band-Pass Filter

Required:
A bandpass filter with the delay measurements of Table 7-3 must be equalized to within
700 ps.

The corresponding delay curve is plotted in Figure 7-19a.

Result:

(a) Since the minimum delay occurs at 1000 Hz, normalize the curve by dividing the
frequency axis by 1000 Hz and multiplying the delay axis by 277 1000. The results
are shown in Table 7-4 and plotted in Figure 7-19b.

(b) An equalizer is required that has a nominal delay peak of 10 s at 1 rad/s relative to
the delay at 0.5 and 1.5 rad/s. Examination of Table 7-6 indicates that the delay cor-
responding to a Q of 2.75 will meet this requirement.

If we add this delay, point by point, to the normalized delay of Table 7-4, the values of
Table 7-5 will be obtained.

TABLE 7-3 Specified Delay TABLE 7-4 Normalized Delay
Frequency, Hz Delay, s Frequency, rad/s Delay, s
500 1600 0.5 10.1
600 960 0.6 6.03
700 640 0.7 4.02
800 320 0.8 2.01
900 50 0.9 0.31
1000 0 1.0 0
1100 160 1.1 1.01
1200 480 1.2 3.02
1300 800 1.3 5.03
1400 1120 1.4 7.04
1500 1500 1.5 9.42
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TABLE 7-5 Equalized Delay

Frequency, rad/s Delay, s
0.5 11.6
0.6 8.19
0.7 7.36
0.8 7.58
0.9 9.50
1.0 11.0
1.1 8.89
12 7.64
1.3 7.83
1.4 8.86
1.5 10.7

1500}
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,, 1000+ : 1o
E Y
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- | @ :
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FIGURE 7-19 The delay equalization of Example 7-4: (a) unequalized delay; (b) normalized delay;
(c) normalized equalized delay; and (d) denormalized equalized delay.
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TABLE 7-6 The Delay of Normalized Second-Order Section (w, = 1 rad/s)

0 TDO) o(Tyme) Togme 01 02 03 04 05 06 07 08 09 10 L1 12 13 14 15 16 17 18 19 20 30 40 50
025 800 DC 800 7.09 533 3.85 2.84 2.19 1.76 142 127 111 1.00 0.91 0.84 0.78 0.73 0.69 0.66 0.62 0.60 0.57 0.55 0.38 0.28 0.2
050 400  DC 400 3.96 3.85 3.67 3.45 3.20 2.94 2.69 2.44 221 200 1.81 1.64 149 135 1.23 1.12 1.03 0.94 0.87 0.80 0.40 0.24 0.15
075 267 0700 351 270 279 2.94 3.12 331 3.46 3.51 345 3.27 3.00 2.69 236 2.06 1.79 1.56 1.36 1.19 1.05 0.93 0.83 0.33 0.18 0.11
100 200 0856 431 2.04 2.16 237 2.68 3.08 3.53 3.97 426 428 4.00 3.52 2.99 2.48 2.05 1.71 1.43 1.20 1.03 0.88 0.77 0.27 0.14 0.09
125 160 0913 523 1.64 1.76 1.97 2.30 2.77 3.40 4.16 487 522 5.00 4.32 350 2.76 2.18 1.73 1.40 1.15 0.96 0.81 0.69 0.23 0.11 0.07
150 133 0941  6.18 1.37 147 1.67 1.99 247 3.18 4.16 528 6.09 6.00 5.06 3.90 2.92 220 1.69 1.33 1.07 0.88 0.73 0.62 0.20 0.10 0.06
175 114 0957 7.5 1.17 127 145 1.75 2.22 2.95 405 554 6.88 7.00 5.75 4.20 2.99 2.17 1.62 1.24 0.98 0.80 0.66 0.55 0.17 0.08 0.05
200 100 0968 813 1.03 1.12 1.28 1.56 2.00 2.72 3.89 5.66 7.59 8.00 6.38 4.41 2.99 1.10 1.53 1.16 0.91 0.73 0.60 0.50 0.15 0.07 0.04
225 089 0975  9.12 091 099 1.15 1.40 1.82 2.52 3.71 569 820 9.00 6.94 4.54 2.95 2.01 1.44 1.08 0.83 0.66 0.54 0.45 0.14 0.06 0.04
250 080 0980 10.1 0.82 0.90 1.04 127 1.66 2.33 3.52 5.66 8.74 10.00 7.44 4.60 2.88 1.92 1.35 1.00 0.77 0.61 0.50 0.41 0.12 0.06 0.04
275 073 0983 11.1 075 0.82 0.94 1.16 1.53 2.16 3.34 557 9.19 11.0 7.88 4.62 2.80 1.82 1.27 0.93 0.72 0.57 0.46 0.38 0.11 0.05 0.03
300 067 098 121 0.69 0.75 0.87 1.07 1.41 2.02 3.16 545 957 12.0 825 4.60 270 1.73 1.20 0.87 0.67 0.53 0.43 0.35 0.10 0.05 0.03
325 061 098 13.1 0.63 0.69 0.80 0.99 1.31 1.89 2.99 531 9.88 13.0 857 4.55 2.60 1.65 1.13 0.82 0.62 0.49 0.40 0.33 0.09 0.05 0.03
350 057 0990 141 0.59 0.64 0.75 0.92 1.23 1.77 2.84 5.15 10.1 140 8.84 4.48 250 1.56 1.06 0.77 0.58 0.46 037 0.31 0.09 0.04 0.03
375 053 0991 151 0.55 0.60 0.70 0.86 1.15 1.67 2.69 5.00 103 150 9.06 440 2.41 1.49 1.01 0.73 0.55 0.43 035 0.29 0.08 0.04 0.02
400 050 0992 161 051 056 0.65 0.81 1.08 1.57 2.56 4.84 104 160 9.23 430 2.31 1.42 0.95 0.69 0.52 0.41 0.33 0.27 0.08 0.04 0.02
425 047 0993 17.1 048 053 0.62 0.76 1.02 1.49 244 4.68 10.5 17.0 9.36 4.20 2.22 1.35 0.91 0.65 0.49 038 0.31 0.26 0.07 0.04 0.02
450 044 0994 181 046 050 0.58 0.72 0.97 1.41 233 452 10.6 180 9.46 4.10 2.14 1.29 0.86 0.62 0.47 0.36 0.29 0.24 0.07 0.03 0.02
475 042 0994 191 043 047 0.55 0.69 0.92 1.35 2.22 437 10.6 19.0 9.52 3.99 2.06 1.24 0.82 0.59 0.44 035 0.29 0.23 0.07 0.03 0.02
500 040 0995 20.1 041 045 0.52 0.65 0.87 1.28 2.13 423 10.6 20.0 9.56 3.89 1.98 1.18 0.79 0.56 0.42 0.33 0.27 0.22 0.06 0.03 0.02
600 033 0997 240 034 038 044 054 0.73 1.08 1.82 3.71 10.3 240 948 348 1.71 1.01 0.67 0.47 0.36 0.28 0.22 0.18 0.05 0.03 0.02
700 029 0997 280 029 0.32 0.38 0.47 0.63 093 1.58 3.28 9.83 280 9.18 3.13 1.51 0.88 0.58 0.41 031 0.24 0.19 0.16 0.04 0.02 0.01
800 025 0998 320 0.26 028 0.33 0.41 0.55 0.82 1.39 2.94 9.28 32.0 877 2.82 134 0.78 0.51 0.36 027 0.21 0.17 0.14 0.04 0.02 0.01
9.00 022 0999 360 023 025 0.29 036 0.49 0.73 1.24 2.65 873 36.0 832 2.57 1.20 0.70 0.45 0.32 0.24 0.19 0.15 0.12 0.03 0.02 0.01
1000 020 0999 400 0.21 023 0.26 033 0.44 0.66 1.13 241 8.19 40.0 7.87 2.35 1.09 0.69 0.41 0.30 0.22 0.17 0.13 0.11 0.03 0.02 0.01
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The corresponding curve is plotted in Figure 7-19c¢. This curve can be denormalized by
dividing the delay by 27 1000 and multiplying the frequency axis by 1000, resulting in
the final curve of Figure 7-19d. The differential delay variation over the band is about
675 ps.

The equalizer of Example 7-4 provides over a 2:1 reduction in the differential delay.

Further equalization can be obtained with two addition equalizers to fill in the concave
regions around 750 and 1250 Hz.

7.5 WIDEBAND 90° PHASE-SHIFT NETWORKS

Wideband 90° phase-shift networks have a single input and two output ports. Both outputs
maintain a constant phase difference of 90° within a prescribed error over a wide range
of frequencies. The overall transfer function is all-pass. These networks are widely used
in the design of single-sideband systems and in other applications requiring 90° phase
splitting.

Bedrosian (see the Bibliography) solved the approximation problem for this family of
networks on a computer. The general structure is shown in Figure 7-20a and consists of N
and P networks. Each network provides real-axis pole-zero pairs and is all-pass. The trans-
fer function is of the form

(s — (Xl)(s - 012) Gl an/2)
s+ a)s +ay---(s+ an/z)

T(s) = (7-74)

where n/2 is the order of the numerator and denominator polynomials. The total complex-
ity of both networks is then 7.

Real-axis all-pass transfer functions can be realized using a cascade of passive or active
first-order sections. Both versions are shown in Figure 7-20b and c.

The transfer functions tabulated in Table 7-7 approximate a 90° phase difference in an
equiripple manner. This approximation occurs within the bandwidth limits w, and w,, as
shown in Figure 7-21. These frequencies are normalized so that V w,w, = 1. For a speci-

fied bandwidth ratio ,/w,, the individual band limits can be found from

b2

o, =\ o, (7-75)
wu
and @, =\ @, (7-76)

As the total complexity n is made larger, the phase error decreases for a mixed band-
width ratio or, for a fixed phase error, the bandwidth ratio will increase.

To use Table 7-7, first determine the required bandwidth ratio from the frequencies
given. A network is then selected that has a bandwidth ratio w /w, that exceeds the require-
ments, and a phase error =A¢ that is acceptable.
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FIGURE 7-20 Wideband 90° phase-shift networks: (a) the general structure; (b) a passive realization; and
(c) an active realization.

A frequency-scaling factor (FSF) is determined from
FSF = 27f, (7-77)

where f; is the geometric mean of the specified band limits or Vf, f,. The tabulated «’s are
then multiplied by the FSF for denormalization. The resulting pole-zero pairs can be real-
ized by a cascade of active or passive first-order sections for each network.
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TABLE 7-7 Pole-Zero Locations for 90° Phase-Shift Networks*

n Ad ay ap
w,/w, = 1146
6 6.84° 43.3862 8.3350
2.0264 0.4935
0.1200 0.0231
8 2.12° 59.7833 14.4159
4.8947 1.6986
0.5887 0.2043
0.0694 0.0167
10 0.66° 75.8845 20.4679
8.3350 3.5631
1.5279 0.6545
0.2807 0.1200
0.0489 0.0132
w, /o, = 573.0
6 4.99° 34.3132 7.0607
1.9111 0.5233
0.1416 0.0291
8 1.39° 47.0857 11.8249
4.3052 1.6253
0.6153 0.2323
0.0846 0.0212
10 0.39° 59.6517 16.5238
7.0607 3.2112
1.4749 0.6780
0.3114 0.1416
0.0605 0.0168
w,/w, =286.5
4 13.9° 16.8937 2.4258
0.4122 0.0592
6 3.43° 27.1337 5.9933
1.8043 0.5542
0.1669 0.0369
8 0.84° 37.0697 9.7136
3.7944 1.5566
0.6424 0.2636
0.1030 0.0270
10 0.21° 46.8657 13.3518
5.9933 2.8993
1.4247 0.7019
0.3449 0.1669
0.0749 0.0213
(Continued)
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TABLE 7-7 Pole-Zero Locations for 90° Phase-Shift Networks

(Continued)
n Ad ay ap
w, /o, = 1432
4 10.2° 13.5875 2.2308
0.4483 0.0736
8 0.46° 29.3327 8.0126
3.3531 1.4921
0.6702 0.2982
0.1248 0.0341
10 0.10° 37.0091 10.8375
5.1050 2.6233
1.3772 0.7261
0.3812 0.1959
0.0923 0.0270
w, /o, = 81.85
4 7.58° 11.4648 2.0883
0.4789 0.0918
6 1.38° 18.0294 4.5017
1.6316 0.6129
0.2221 0.0555
8 0.25° 24.4451 6.8929
3.0427 1.4432
0.6929 0.3287
0.1451 0.0409
10 0.046° 30.7953 9.2085
4.5017 2.4248
1.3409 0.7458
0.4124 0.2221
0.1086 0.0325
w, /o, = 57.30
4 6.06° 10.3270 2.0044
0.4989 0.0968
6 0.99° 16.1516 4.1648
1.5873 0.6300
0.2401 0.0619
8 0.16° 21.8562 6.2817
2.8648 1.4136
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TABLE 7-7 Pole-Zero Locations for 90° Phase-Shift Networks

(Continued)

n Ad ay ap
0.7074 0.3491
0.1592 0.0458

10 0.026° 27.5087 8.3296
4.1648 2.3092
1.3189 0.7582
0.4331 0.2401
0.1201 0.0364

w,/w, = 28.65

4 3.57° 8.5203 1.6157
0.5387 0.1177

6 0.44° 13.1967 3.6059
1.5077 0.6633
0.2773 0.0758

8 0.056° 17.7957 5.2924
2.5614 1.3599
0.7354 0.3904
0.1890 0.0562

10 0.0069° 22.3618 6.9242
3.6059 2.1085
1.2786 0.7821
0.4743 0.2773
0.1444 0.0447

w,/w, = 11.47

4 1.31° 5.9339 1.5027
0.5055 0.1280

6 0.10° 10.4285 3.0425
1.4180 0.7052
0.3287 0.0959

8 0.0075° 14.0087 4.3286
2.2432 1.2985
0.7701 0.4458
0.2310 0.0714

*Numerical values for this table is obtained from S. D. Bedrosian, “Normalized
Design of 90° Phase-Difference Networks,” IRE Transactions on Circuit Theory,
June 1960.
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FIGURE 7-21 Wideband 90° phase-shift
approximation.

The following example illustrates the design of a 90° phase-shift network.
Example 7-5  Design of an Active Wideband 90° Phase Splitter

Required:

Design a network having dual outputs which maintain a phase difference of 90° within
+0.2° over the frequency range of 300-3000 Hz. The circuit should be all-pass and
active.

Result:

(a) Since a 10:1 bandwidth ratio is required (3000 Hz/300 Hz), the design correspond-
ing ton = 6 and w,/w; = 11.47 is chosen. The phase-shift error will be +0.1°.

(b) The normalized real pole-zero coordinates for both networks are given as follows:

P Network N Network
a; = 10.4285 a, = 3.0425
a, = 1.4180 a5 = 0.7052
a; = 0.3287 ag = 0.0959

The frequency-scaling factor is
FSF = 2m@f, = 2w X 948.7 = 5961 (7-77)

where f;, is V300 X 3000. The pole-zero coordinates are multiplied by the FSF,
resulting in the following set of denormalized values for a:

P Network N Network
a) = 62164 oy = 18136
af = 8453 as = 4204

oy = 1959 ag = 571.7
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10 kQ 10 kQ 10 kQ

1000 pF 1000 pF 1000 pF
162 kQ 118 kQ 511 kQ

10 k2 10 k@ 10 kQ

1000 pF 1000 pF 1000 pF
549 kQ 237 kQ 174 MQ

FIGURE 7-22 The wideband 90° phase-shift network of Example 7-5.

(c) The P and N networks can now be realized using the active first-order all-pass cir-
cuit of Section 7.2 and Figure 7-11a.

If we let R” = 10 kQ) and C = 1000 pF, the value of R is given by
1

R = R (7-46)

Using the denormalized o’s for the P and N networks, the following values are
obtained:

Section P Network N Network
1 R = 16.09 kQ) R = 55.14kQ
2 R =1183kQ R =2379kQ
3 R =510.5kQ R = 1.749 MQ

The final circuit is shown in Figure 7-22 using standard 1-percent resistor values.

7.6 ADJUSTABLE DELAY AND AMPLITUDE
EQUALIZERS

Delay equalizers were discussed in Section 7.2 and applied to the delay equalization of fil-
ters in Section 7.4. Frequently, a transmission channel must be equalized to reduce the
delay and amplitude variation. This process is called line conditioning. Since the initial
parameters of lines vary and the line characteristics may change from time to time, the
equalizer will consist of multiple sections where each stage is required to be adjustable.
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LC Delay Equalizers

The circuit of Figure 7-23a illustrates a simplified adjustable LC delay equalizer section.
The emitter and collector load resistors R, and R, are equal, so Q, serves as a phase split-
ter. Transistor Q, is an emitter follower output stage.

The equivalent circuit is shown in Figure 7-23b. The transfer function can be deter-
mined by superposition as

1 1
s — —=s5 +
T(s) = % (7-78)
24 L L
K +Rcs+ LC

This expression is of the same form as the general second-order all-pass transfer func-
tion of Equation (7-6). By equating coefficients, we obtain

1
[ — 7-79
“r ViLe 7
and 0 = w,RC (7-80)

Equation (7-80) can be substituted in Equation (7-13) for the maximum delay of a sec-
ond-order section, resulting in

T,

gd, max

= 4RC (7-81)

By making R variable, the delay can be directly controlled while retaining the all-pass
properties. The peak delay will occur at or near the LC resonant frequency.

R
VN~ —O
Ein l Eou'
0
Eoui Ein l ¢
L
(b)

FIGURE 7-23 Adjustable LC delay equalizer: (a) the adjustable equalizer; (b) equivalent
circuit; and (c) operational-amplifier realization.
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The all-pass transfer function of Equation (7-78) can also be implemented using an

operational amplifier. This configuration is shown in Figure 7-23¢, where R’ is arbitrary.
Design Equations (7-79) through (7-81) still apply.

Example 7-6 Design of an Adjustable LC Delay Equalizer using the Two-Transistor
Circuit

Required:
Design an adjustable LC delay equalizer using the two-transistor circuit of Figure 7-23a.
The delay should be variable from 0.5 to 2.5 ms with a center frequency of 1700 Hz.

Result:
Using a capacitor C of 0.05 wF, the range of resistance R is given by

Lamax 05 X 1073

mn = T4C T 4.05 X 10°°
2.5 X 1073

R.=———————— =125k0
4% 0.05 X 1076 >

R

= 25004 (7-81)

The inductor is computed by the general formula for resonance w? LC = 1, resulting in an
inductance of 175 mH. The circuit is shown in Figure 7-24a. The emitter resistor R, is

+V

10 uF

'L——o Eout

175 mH
10 k 47 k

4990 Q
1700 Hz

()

ng. ms

1 1 ]
-9000 -500 1700 +500 +1000
Frequency, Hz

(b)

FIGURE 7-24 The adjustable delay equalizer of Example 7-6: (a) equalizer
circuit; and (b) the delay adjustment range.
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composed of two resistors for proper biasing of phase splitter Q,, and electrolytic capaci-
tors are used for DC blocking. The delay extremes are shown in the curves of Figure 7-24b.

LC Delay and Amplitude Equalizers. Frequently, the magnitude response of a transmission
channel must be equalized along with the delay. An equalizer circuit featuring both adjustable
amplitude and delay is shown in Figure 7-25a. Transistor Q, serves as a phase splitter where
the signal applied to emitter follower Q, is K times the input signal. The equivalent circuit is
illustrated in Figure 7-25b. The transfer function can be determined by superposition as

K 1
$2— s+
RC” " LC
(s) = X | (7-82)
2+ s T
RC” " LC

If K is set equal to unity, the expression is then equivalent to Equation (7-78) correspond-
ing to a second-order all-pass transfer function. As K increases or decreases from unity, a boost
or null occurs at midfrequency with an asymptotic return to unity gain at DC and infinity.

The amount of amplitude equalization at midfrequency in decibels is given by

Ay =20log K (7-83)

The maximum delay occurs at the LC resonant frequency and can be derived as

= 2RC ., are (7-84)

gdmax K

R
r——O
KEinl Eout
O
Ein l c
L
(®)

©

FIGURE 7-25 An adjustable LC delay and amplitude equalizer: (a) adjustable delay and amplitude equalizer;
(b) equivalent circuit; and (c¢) an operational-amplifier realization.
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If K is unity, Equation (7-84) reduces to 4 RC, which is equivalent to Equation (7-81)
for the all-pass circuit of Figure 7-23.

An operational-amplifier implementation is also shown in Figure 7-25¢. The value of R’
is arbitrary, and Equations (7-83) and (7-84) are still applicable.

The following conclusions may be reached based on the evaluation of Equations (7-82)
through (7-84):

1. The maximum delay is equal to 4 RC for K = 1, so R is a delay magnitude control.

2. The maximum delay will be minimally affected by a nonunity K, as is evident from
Equation (7-84).

3. The amount of amplitude equalization at the LC resonant frequency is independent of the
delay setting and is strictly a function of K. However, the selectivity of the amplitude
response is a function of the delay setting and becomes more selective with increased delay.

The curves of Figure 7-26 show some typical delay and amplitude characteristics. The
interaction between delay and amplitude is not restricted to LC equalizers and will occur
whenever the same resonant element, either passive or active, is used to provide both the

+10

1 1
100 1k 10k
Frequency, Hz

(2)

K=0.707
10k
g
0—3 [o}.]
1 1 1 1
% 500 1000 1500 2000

Frequency, Hz
(b)

FIGURE 7-26 A typical delay and amplitude response for an LC delay and
amplitude equalizer: (@) amplitude characteristics for a fixed delay; and (b) the
delay variation for =3 dB of amplitude equalization.
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EinO—

FIGURE 7-27 A DABP delay and amplitude equalizer: (a) adjustable delay equalizer; (b) adjustable
delay and amplitude equalizer; and (c) adjustable delay and amplitude equalizer with extended ampli-
tude range.
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amplitude and delay equalization. However, for small amounts of amplitude correction,
such as *3 dB, the effect on the delay is minimal.

Active Delay and Amplitude Equalizers. The dual-amplifier bandpass (DABP) delay
equalizer structure of Section 7.2, under “Active All-Pass Structures,” and Figure 7-13 has
a fixed gain and remains all-pass regardless of the design Q. If resistor R, is made variable,
the Q, and therefore the delay, can be directly adjusted with no effect on resonant frequency
or the all-pass behavior. The adjustable delay equalizer is shown in Figure 7-27a. The
design equations are

T = 4R,C (7-85)

and R, =R, (7-86)

i
w,C
where C, R, R', and R”, can be conveniently chosen. Resistor R, can be made variable for
frequency trimming.

If amplitude equalization capability is also desired, a potentiometer can be introduced,
resulting in the circuit of Figure 7-27b. The amplitude equation at w, is given by

Ay =20 log (4K — 1) (7-87)

where a K variation of 0.25 to 1 covers an amplitude equalization range of — to +9.5 dB.

To extend the equalization range above +9.5 dB, an additional amplifier can be intro-
duced, as illustrated in Figure 7-27c. The amplitude equalization at w, is then obtained
from

Ag = 201log 2K — 1) (7-88)

where a K variation of 0.5 to % results in an infinite range of equalization capability. In real-
ity, a £15-dB maximum range has been found to be more than adequate for most equal-
ization requirements.

Example 7-7 Design of an Active Adjustable Delay and Amplitude Equalizer

Required:
Design an adjustable active delay and amplitude equalizer that has a delay adjust-
ment range of 0.5-3 ms, an amplitude range of =12 dB, and a center frequency of
1000 Hz.

Result:
The circuit of Figure 7-27¢ will provide the required delay and amplitude adjustment
capability.

If we choose C = 0.0l pFand R = R’ = R" = 10 k{), the element values are com-
puted as follows:

Tyimx 0.5 X 1073

Rimn = 3¢ = sy o8 = 125k (7-85)

_3XxX107°

b = 5o 108 = 19k

R

S S 1 - .
Ry= Ry = = 5000 105~ 159K (7-86)
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o—e

Delay 001 uF

FIGURE 7-28 The adjustable delay and amplitude equalizer of Example 7-7.

The extreme values of K for =12 dB of amplitude equalization are found from

A
K = %{log"(ﬁ) + 1} (7-88)

The range of K is then 0.626 to 2.49. The equalizer section is shown in Figure 7-28.
Resistor R, has also been made adjustable for frequency trimming.

An active delay equalizer having adjustable delay was implemented by combining a sec-
ond-order bandpass section with a summing amplifier. The bandpass section was required
to have a fixed gain and a resonant frequency which were both independent of the Q setting.
If amplitude equalization alone is needed, the bandpass section can operate with a fixed
design Q. The low-complexity MFBP delay equalizer section of Figure 7-12a can then be
used as an adjustable amplitude equalizer by making one of the summing resistors variable.

This circuit is shown in Figure 7-29a. The design equations are given by

20
R, = .C (7-89)

R,
R, =~ (7-90)

Rla
R, = 72Q2 _— (7-91)
The amount of amplitude equalization at w, is computed from

Agp =20 10g<11< - l> (7-92)

where K will range from O to 1 for an infinite range of amplitude equalization.
If the Q is below 0.707, the value of R, becomes negative, so the circuit of Figure
7-29b is used. R, is given by Equation (7-89), and R, is found from

R,

T

(7-93)
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FIGURE 7-29 MFBP amplitude equalizer: (a) amplitude equalizer 0.707 < Q < 20; and
(b) amplitude equalizer 0 < Q < 20.

The attenuation or boost at resonance is computed from

2 2
Ay = 20 1og<£ — 1> (7-94)

The magnitude of Q determines the selectivity of the response in the region of resonance
and is limited to values typically below 20 because of amplifier limitations.

If higher Qs are required, or if a circuit featuring independently adjustable Q and ampli-
tude equalization is desired, the DABP circuits of Figure 7-27 may be used, where R,
becomes the Q adjustment and is given by

R, = OR, (7-95)

To compute the required Q of an amplitude equalizer, first define f,, which is the
frequency corresponding to one-half the pad loss (in decibels). The Q is then given by

_ VK,

0= ) (7-96)
Agg
where K, = log™! 20 ) = 1040 (7-97)
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and b=— 7-98
7 (7-98)
1

or b=— 7-99

whichever b is greater than unity.

Example 7-8 Design of an Active Fixed Amplitude Equalizer

Required:

Design a fixed active amplitude equalizer that provides a +12-dB boost at 3200 Hz and
has a boost of +6 dB at 2500 Hz.

Result:

(a) First, compute

K, = 10/ = 101220 = 308 (7-97)
and b= Jr_ 3200Hz _ 28 (7-99)
f, ~ 2500Hz

The Q is then found from

AV, 2500 x 1.2821/3.98

CfBE—1)  320001.282 — 1)

= 4.00 (7-96)

(b) The MFBP amplitude equalizer circuit of Figure 7-29a will be used. Using a C of
0.0047 WF and an R of 10 k), the element values are given by

20 2 X 4 _
R, = ©,C 273200 X 4.7 X 1070 84.6 k0 (7-89)
R
R, = 72 = 423kQ (7-90)
R, 43 x10°
Rlb—2Q2_]—2X42_1—136SQ (7-91)
K ! I = 0.200 (7-92)

T 100 1+ 10722

The equalizer circuit and corresponding frequency response are shown in Fig-
ure 7-30.
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FIGURE 7-30 The amplitude equalizer of Example 7-8: (a) amplitude equalizer circuit; and
(b) frequency response.
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Source: ELECTRONIC FILTER DESIGN HANDBOOK

CHAPTER §

REFINEMENTS IN LC FILTER
DESIGN AND THE USE OF
RESISTIVE NETWORKS

8.1 INTRODUCTION

The straightforward application of the design techniques outlined for LC filters will not
always result in practical element values or desirable circuit configurations. Extreme cases
of impedance or bandwidth can produce designs which may be extremely difficult or even
impossible to realize. This chapter is concerned mainly with circuit transformations so that
impractical designs can be transformed into alternate configurations having the identical
response and using more practical elements. Also, the use of resistive networks to supple-
ment LC filters or function independently is covered.

8.2 TAPPED INDUCTORS

An extremely useful tool for eliminating impractical element values is the transformer. As
the reader may recall from introductory AC circuit analysis, a transformer having a turns
ratio N will transform an impedance by a factor of N2. A parallel element can be shifted
between the primary and secondary at will, provided that its impedance is modified by N2.

Figure 8-1 illustrates how a tapped inductor is used to reduce the value of a resonating
capacitor. The tuned circuit of Figure 8-1a is first modified by introducing an impedance
step-up transformer, as shown in Figure 8-1b, so that capacitor C can be moved to the sec-
ondary and reduced by a factor of N2. This can be carried a step further, resulting in the cir-
cuit of Figure 8-1c. The transformer has been absorbed as a continuation of the inductor,
resulting in an autotransformer. The ratio of the overall inductance to the tap inductance
becomes N2,

As an example, let’s modify the tuned circuit of Example 5-4, shown in Figure 8-2a. To
reduce the capacitor from 0.354 wF to 0.027 wF, the overall inductance is increased by the
impedance ratio 0.354 wF/0.027 wF, resulting in the circuit of Figure 8-2b. The resonant
frequency remains unchanged since the overall LC product is still the same.

As a further example, let’s consider LC elliptic-function low-pass filters. The parallel res-
onant circuits may also contain high-capacity values which can be reduced by this method.
Figure 8-3 shows a section of a low-pass filter. To reduce the resonating capacitor to 0.1 wF,
the overall inductance is increased by the factor 1.055 wF/0.1 wF and a tap is provided at the
original inductance value.
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1N
dc
A T N2
L Z-C L
o
@) (b) ©

FIGURE 8-1 The tapped inductor: (a) basic tuned circuit; (b) the introduction of a trans-
former; and (c¢) absorbed transformer.

The tapped coil is useful not only for reducing resonating capacitors, but also for trans-
forming entire sections of a filter including terminations. The usefulness of the tapped
inductor is limited only by the ingenuity and resourcefulness of the designer. Figure 8-4
illustrates some applications of this technique using designs from previous examples. In the
case of Figure 8-4a, where a tapped coil enables operation from unequal terminations, the
same result could have been achieved using Bartlett’s bisection theorem or other methods
(see Section 3.1). However, the transformer approach results in maximum power transfer
(minimum insertion loss). The circuits of Figure 8-4b and ¢ demonstrate how element val-
ues can be manipulated by taps. The tapped inductance values shown are all measured from
the grounded end of the shunt inductors. Series branches can be manipulated up or down in
impedance level by multiplying the shunt inductance taps on both sides of the branch by
the desired impedance-scaling factor.

Transformers or autotransformers are by no means ideal. Imperfect coupling within the
magnetic structure will result in a leakage inductance which can cause spurious responses at
higher frequencies, as shown in Figure 8-5. These effects can be minimized by using near-unity

1365 H
i}
6 kQ . 1055 uF
716 uH loA354 uF 26kQ T I
T (a)
(@
144 H
1.365H
~0027 uF I
1

6 k) I T

¢ (®)

(®) FIGURE 8-3 The application of a
FIGURE 8-2 Reducing the resonant capac- tapped inductor in elliptic-function low-
itor value: (a) tuned circuit; and (b) modified pass filters: (a) a filter section; and
circuit. (b) tapped inductor.
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3 : 3300 pF .4
3 253 mH 316.4 uH 376.64H
4314 uH I < <
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©
FIGURE 8-4 Applications of tapped inductors: (a) the high-pass filter of Example 4-1 modified for
unequal terminations; (b) the filter of Example 5-7 modified for standard capacitor values; and (c) the filter
of Example 5-8 modified for standard capacitor values.

turns ratios. Another solution is to leave a portion of the original capacity at the tap for high-
frequency bypassing. This method is shown in Figure 8-6.

8.3 CIRCUIT TRANSFORMATIONS

Circuit transformations fall into two categories: equivalent circuits or narrowband approxi-
mations. The impedance of a circuit branch can be expressed as a ratio of two polynomials
in s, similar to a transfer function. If two branches are equivalent, their impedance expres-
sions are identical. A narrowband approximation to a particular filter branch is valid only
over a small frequency range. Outside of this region, the impedances depart considerably.
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\
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FIGURE 8-5 Spurious responses from leakage inductance: (a) in a low-pass filter; and (b) in a bandpass
filter.

Thus, the filter response is affected. As a result, narrowband approximations are essentially
limited to small percentage bandwidth bandpass filters.

Norton’s Capacitance Transformer

Let’s consider the circuit of Figure 8-7a, consisting of impedance Z interconnected between
impedances Z, and Z,. If it is desired to raise impedance Z, by a factor of N? without dis-
turbing an overall transfer function (except for possibly a constant multiplier), a trans-
former can be introduced, as shown in Figure 8-7b.

Determinant manipulation can provide us with an alternate approach. The nodal deter-
minant of a two-port network is given by

‘ Y, -Y,
—Y, Y,

where Y,, and Y,, are the input and output nodal admittance, respectively, and Y}, and Y,
are the transfer admittances, which are normally equal to each other.

3H 0.3 uf

Ol uF 209 uF

1H
T
o _

(a) (b) (c)

FIGURE 8-6 Preventing spurious response from leakage inductance: (a) initial circuit; (b) split
capacity; and (c) transformed circuit.
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[ O [og T —0

(d)
FIGURE 8-7 Norton’s capacitance transformer: (a) a general two-port network; (b) transformer step-

up of output impedance; (¢) the Norton impedance transformation; and (d) the Norton capacitance trans-
formation.

If we consider the two-port network of Figure 8-7a, the nodal determinant becomes

1,1 1
z,vz Tz
1 11
Z 7,7z

To raise the impedance of the output or Y,, node by N2, the second row and second col-
umn are multiplied by 1/N, resulting in

1,1 1
z, "z NZ
11
NZ Nz, Nz

This determinant corresponds to the circuit of Figure 8-7¢. The Y/, total nodal admit-
tance is unchanged, and the Y,, total nodal admittance has been reduced by N 2, or the
impedance has been increased by N2. This result was originated by Norton and is called
Norton’s transformation.

If the element Z is a capacitor C, this transformation can be applied to obtain the equiv-
alent circuit of Figure 8-7d. This transformation is important since it can be used to modify
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the impedance on one side of a capacitor by a factor of N> without a transformer. However,
the output shunt capacitor introduced is negative. A positive capacitor must then be present
external to the network so that the negative capacitance can be absorbed.

If an N? of less than unity is used, the impedance at the output node will be reduced. The
shunt capacitor at the input node will then become negative and must be absorbed by an
external positive capacitor across the input.

The following Example illustrates the use of the capacitance transformer.

Example 8-1 Using the Capacitance Transformation to Lower Inductor Values

Required:

Using the capacitance transformation, modify the bandpass filter circuit of Figure 5-3c¢ so
that the 1.91-H inductor is reduced to 100 mH. The source and load impedances should
remain 600 ().

Result:

(a) The circuit to be transformed is shown in Figure 8-8a. To facilitate the capacitance
transformation, the 0.01329 WwF series capacitor is split into two equal capacitors of
twice the value and redrawn in Figure 8-8b.

To reduce the 1.91-H inductor to 100 mH, first lower the impedance of the network
to the right of the dashed line in Figure 8-8b by a factor of 100 mH/1.91 H, or 0.05236.
Using the capacitance transformation of Figure 8-7d, where N> = 0.05236, the cir-
cuit of Figure 8-8c is obtained where the input negative capacitor has been absorbed.

(b) To complete the transformation, the output node must be transformed back up in
impedance to restore the 600-{) termination. Again using the capacitance transfor-
mation with an N2 of 600 2/31.42 Q) or 19.1, the final circuit of Figure 8-8 is
obtained. Because of the symmetrical nature of the circuit of Figure 8-8b, both
capacitor transformations are also symmetrical.

(c) Each parallel resonant circuit is tuned by opening the inductors of the adjacent series
resonant circuits, and each series resonant circuit is resonated by shorting the induc-
tors of the adjacent parallel tuned circuits, as shown in Figure 8-8e.

Narrowband Approximations

A narrowband approximation to a circuit branch consists of an alternate network which is the-
oretically equivalent only at a single frequency. Nevertheless, good results can be obtained
with bandpass filters having small percentage bandwidths typically of up to 20 percent.

The series and parallel RL and RC circuits of Table 8-1 are narrowband approximations
which are equivalent at w,. This frequency is generally set equal to the bandpass center
frequency in Equations (8-1) through (8-8). These equations were derived simply by
determining the expressions for the network impedances and then equating the real parts
and the imaginary parts to solve for the resistive and reactive components, respectively.

Narrowband approximations can be used to manipulate the source and load terminations
of bandpass filters. If a parallel RC network is converted to a series RC circuit, it is appar-
ent from Equation (8-8) that the resistor value decreases. When we apply this approxima-
tion to a bandpass filter having a parallel resonant circuit as the terminating branch, the
source or load resistor can be made smaller. To control the degree of reduction so that a
desired termination can be obtained, the shunt capacitor is first subdivided into two capac-
itors where only one capacitor is associated with the termination.
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FIGURE 8-8 Capacitance transformation applied to the filter of Example 5-2: (@) the bandpass filter of
Example 5-2; (b) split series capacitors; (c) the reduction of the 1.91-H inductor using capacitance transforma-
tion; (d) the restoration of the 600-€) output impedance using capacitance transformation; and (e) equivalent
circuits for tuning.
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TABLE 8-1 Narrowband Approximations

Circuit Design Equations
2
L= Lo +—Re (8-1)
Wo Lu
Ly _ wsld
Lo Re . Ri=Re+ R, (8-2)
OIS Y AAN—O -_ 2
Son LR
@wo = 171 -
A T ©-3
272
__woli Ry
Re=grvoil @-4)
=Sy (8-5)
T 1+ wiChRY i
Cp Ro Re=Ry + ICR, (8-6)
@wo - !
Co=C+—hr 8-7
Rs b= GTIRIG ®
Ro=—t (8-8)
* 1+ wsC3R3 i
These results are illustrated in Figure 8-9. The element values are given by
= (8-9)

w,VRR, — R

1 R~ R
and C, =C,— o\ RR. (8-10)
12

where the restrictions R, < R, and (R, — R,)/(RIR,) < w}C% apply.

Example 8-2 Using a Narrowband Transformation to Lower Source Impedance

Required:
Modify the 100 kHz bandpass filter of Example 5.7 for a source impedance of 600 ().

Bandpass filter
-~ -
1
|
|
| Cy R,
1 ]
|
. | .

FIGURE 8-9 A narrowband transformation of terminations.

Cr R, L

]
€
(=]

|
|
Lo
|
|
1
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. 792.6 pfF 128.4 pF
= 600 Q
157.3 pF 25 mH

C®

FIGURE 8-10 The narrowband source transformation of Example 8-2: (a) source input to the filter of
Example 5-7; and (b) transformed source.

Result:
The filter is shown in Figure 8-10a. If we use the narrowband source transformation of
Figure 8-9, the values are given by

1 1

C. = =
w0 VRR, — R 27 X 100V7.32 X 6 X 10° — 6007
= 792.6 pF (8-9)
c =c,— BB giox 10
1 r R2R,
3
1 732 X 10— 600 _ oo (5-10)

27 X 10° 7320% X 600

The resulting filter is illustrated in Figure 8-10b.

8.4 DESIGNING WITH PARASITIC CAPACITANCE

As a first approximation, inductors and capacitors are considered Ly R
pure lumped reactive elements. Most physical capacitors are

nearly perfect reactances. Inductors, on the other hand, have

impurities which can be detrimental in many cases. In addition I

to the highly critical resistive losses, distributed capacity across ::f
the coil will occur because of interturn capacitance of the coil d

winding and other stray capacities involving the core. The equiv- ~ FIGURE 8-11  Equivalent
alent circuit of an inductor is shown in Figure 8-11. circuit of an inductor.

The result of this distributed capacitance is to create the
effect of a parallel resonant circuit instead of an inductor. If the coil is to be located in shunt
with an external capacitance, the external capacitor value can be decreased accordingly,
thus absorbing the distributed capacitance.

The distributed capacity across the inductor in a series resonant circuit causes parallel
resonances resulting in nulls in the frequency response. If the self-resonant frequency is
too low, the null may even occur in the passband, thus severely distorting the expected
response.

To determine the effective inductance of a practical inductor, the coil is resonated
to the frequency of interest with an external capacitor, and the effective inductance is
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FIGURE 8-12 The effective inductance with frequency.

calculated using the standard formula for resonance. The effective inductance can also
be found from

Ly

1_@2

where L, is the true (low-frequency) inductance, f'is the frequency of interest, and f, is the
inductor’s self-resonant frequency. As f'approaches f,, the value of L g will increase quite
dramatically and will become infinite at self-resonance. Equation (8-11) is plotted in
Figure 8-12.

To compensate for the effect of distributed capacity in a series resonant circuit, the true
inductance L, can be appropriately decreased so that the effective inductance given by
Equation (8-11) is the required value. However, the Q of a practical series resonant circuit

is given by
2
Outr = QL[I - (;) J (8-12)

where Q, is the Q of the inductor as determined by the series losses (thatis, O, = wL;/R)).
The effective Q is therefore reduced by the distributed capacity.

Distributed capacity is determined by the mechanical parameters of the core and wind-
ing, and as a result is subject to change due to mechanical stresses, and so on. Therefore, for
maximum stability, the distributed capacity should be kept as small as possible. Techniques
for minimizing inductor capacity are discussed in Chapter 9.

Another form of parasitic capacity is stray capacitance between the circuit nodes
and ground. These strays may be especially harmful at high frequencies and with high-
impedance nodes. In the case of low-pass filters where the circuit nodes already have shunt

Ly = (8-11)

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2006 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.



REFINEMENTS IN LC FILTER DESIGN AND THE USE OF RESISTIVE NETWORKS

REFINEMENTS IN LC FILTER DESIGN AND THE USE OF RESISTIVE NETWORKS 335

| L
f
o
b — - ———
.

I

FIGURE 8-13 An elliptic-function bandpass filter.

capacitors to ground, these strays can usually be neglected, especially when the impedance
levels are low.

A portion of an elliptic-function bandpass filter is shown in Figure 8-13. The stray capac-
ity at nodes not connected to ground by a design capacitor may cause problems since these
nodes have high impedances.

Geffe (see Bibliography) has derived a transformation to introduce a design capacitor
from the junction of the parallel tuned circuits to the ground. The stray capacity can then be
absorbed. The design of elliptic-function bandpass filters was discussed in Section 5.1. This
transformation is performed upon the filter while it is normalized to a 1-rad/s center fre-
quency and a 1-() impedance level. A section of the normalized network is shown in Figure
8-14a. The transformation proceeds as follows:

Choose an arbitrary value of m < 1, then

L,1 -
n=1- Lhimzm (8-13)
1—n 1 —m
C — 8-14
o nlL, mn*L, (8-14)
_ 1 1-n
C=L L (8-15)
1
C,=— (8-16)
2 nL,
1
= 8-17
C3 mn’L, 17
1 —m 1
C + - 8-18
tomlL,  nPL, (8-18)
La
Ll = ﬁ (8-19)
-
L, =nL, (8-20)
L,= mnch (8-21)
m*n’L,
BT e (22
AT
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(®)
FIGURE 8-14 A transformation to absorb stray capacitance: (a) normalized filter
section; and (b) transformed circuit.

The resulting network is given in Figure 8-145. The output node has been transformed
to an impedance level of m?n” (). Therefore, all the circuitry to the right of this node, up to
and including the termination, must be impedance-scaled by this same factor. The filter is
subsequently denormalized by scaling to the desired center frequency and impedance level.

8.5 AMPLITUDE EQUALIZATION FOR
INADEQUATE Q

Insufficient element Q will cause a sagging or rounding of the frequency response in the
region of cutoff. Some typical cases are shown in Figure 8-15, where the solid curve rep-
resents the theoretical response. Finite Q will also result in less rejection in the vicinity of
any stopband zeros and increased filter insertion loss.

Amplitude-equalization techniques can be applied to compensate for the sagging response
near cutoff. A passive amplitude equalizer will not actually “boost” the corner response,

dB

Frequency Frequency
(@ (b)
FIGURE 8-15 The effects of insufficient Q: (a) low-pass response; and (b) bandpass response.
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(a) (b) ©

FIGURE 8-16 Bandpass-type amplitude equalizers: (a) constant-impedance type; (b) series nonconstant-
impedance type; and (c¢) shunt nonconstant-impedance type.

since a gain cannot be achieved as with active equalizer circuits. However, the equalizer will
introduce attenuation except in the region of interest, therefore resulting in a boost in terms of
the relative response.

Amplitude equalizers used for low Q compensation are of the bandpass type. They have
either constant-impedance or nonconstant-impedance characteristics. The constant-imped-
ance types can be cascaded with each other and the filter with no interaction. The noncon-
stant-impedance equalizer sections are less complex but will result in some interaction when
cascaded with other networks. However, for a boost of 1 or 2 dB, these effects are usually
minimal and can be neglected.

Both types of equalizers are shown in Figure 8-16. The nonconstant-impedance type can
be used in either the series or shunt form. In general, the shunt form is preferred since the
resonating capacitor may be reduced by tapping the inductor.

To design a bandpass equalizer, the following characteristics must be determined from
the curve to be equalized:

A g = total amount of equalization required in decibels
f. = frequency corresponding to A g
[, = frequency corresponding to A /2

These parameters are illustrated in Figure 8-17, where the corner response and corre-
sponding equalizer are shown for both upper and lower cutoff frequencies.

To design the equalizer, first compute K from

Ay = 20 logkK (8-23)
Then calculate b where
/.
b=— 8-24
7 (8-24)
or b= ]% (8-25)

selecting whichever b is greater than unity.
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(a)
[}
Adp/2 Adar2
Age b |Aee
fy t, f, Equalizel
f
(b)

FIGURE 8-17 Bandpass equalization of the corner response: (a) equalization
of the upper cutoff; and (b) equalization of the lower cutoff.

The element values corresponding to the sections of Figure 8-16 are found as follows:

L = M (8-26)
Yo2mf? - DVEK

I _

€\ = G iL (8-27)

R - HVK -

2 2af,bAK — 1) (8-28)
-1 _

C2 = Gl L, (8-29)

R, = R(K — 1) (8-30)

R
Ry= % (8-31)

where R is the terminating impedance of the filter.

To equalize a low-pass or high-pass filter, a single equalizer is required at the cutoff. For
bandpass or band-reject filters, a pair of equalizer sections is needed for the upper and lower
cutoff frequencies.

The following example illustrates the design of an equalizer to compensate for low Q.
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Example 8-3 Using an Amplitude Equalizer to Compensate for Low Q

Required:
A low-pass filter should have a theoretical roll-off of 0.1 dB at 2975 Hz but has instead
the following response in the vicinity of cutoff due to insufficient Q:

2850 Hz —0.5dB
2975 Hz —1.0dB

Design a shunt nonconstant-impedance equalizer to restore the sagging response. The
filter impedance level is 1000 ().

Result:
First, make the following preliminary computations:
K = 10420 = 1020 = 1.122 (8-23)
Jr _ 2975Hz
b = T 2850 Hz 1.0439 (8-24)
Ry(b? — 1)\/E 10%(1.04392 — 1)V 1.122
then L, = = =40.0mH (8-28)

2afbAK — 1) 2w2850 X 1.04392(1.122 — 1)
1 1

= = = 0.0715 uF 2

© = QmpyL,  @morsy x 004 VOB (829)
Ry 1000

Ry= == T =1 = 81970 (8-31)

The resulting equalizer is shown in Figure 8-18 using the circuit of Figure 8-16c.

;Unequolized Equalized
-0.5

a8 \
-10

2850 Hz2
2975 Hz 2975 Hz

1000 Q

0143 uF 20 mH
>
- ilt
('\) Low-pass filter ‘2 1000 9

4120 Q

FIGURE 8-18 The equalizer of Example 8-3.
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8.6 COIL-SAVING ELLIPTIC-FUNCTION
BANDPASS FILTERS

If an even-order elliptic-function low-pass filter (as shown in Figure 8-19a) is transformed
into a bandpass filter using the methods of Section 5.1, the bandpass circuit of Figure 8-195
is obtained.

A method has been developed to transform the low-pass filter into the configuration of
Figure 8-19¢. The transfer function is unchanged except for a constant multiplier, and 1/2
(n—2) coils are saved in comparison with the conventional transformation. These structures
are called minimum-inductance or zigzag bandpass filters. However, this transformation
requires a very large number of calculations (see Saal and Ulbrich in Bibliography) and is
therefore considered impractical without a computer.

Geffe (see Bibliography) has presented a series of formulas so that this transformation can
be performed on an n = 4 low-pass network. The normalized low-pass element values for
n = 4 can be determined with the Filter Solutions program or found in either Zverev’s
Handbook of Filter Synthesis or Saal’s “Der Entwurf von Filtern mit Hilfe des Kataloges

r I

[og O

(®)

EA Lm»IT Fm———jiA —

(©

FIGURE 8-19 Coil-saving bandpass transformation: (a) an even order elliptic-function low-pass filter;
(b) conventional bandpass transformation; and (¢) minimum-inductance bandpass transformation.

N8
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Normierter Tiefpasse” (see Bibliography). Although these calculations are laborious, the

EXCEL spreadsheet of formulas on the CD-ROM performs these computations.

The low-pass filter and corresponding bandpass network are shown in Figure 8-20. The

following preliminary computations are required.

o
pr T BW
wec
a=
20,
x=a+ Va*+1
C3
= 1+ sz
1+ 1,x°
T
Oy, T
s
L, = 2
o2+
Lt
h=
1
a=1—-—
2
L2
La
Ca
- 1 R —»
T T
o o
1 2 3 4
(a)
L2
Cyy Cp Lp

o——]

l Ciz Cys
«— 10 T=C 3L, Cia
p L3

1 2 3 4

(b)
FIGURE 8-20 The minimum-inductance transformation for n = 4: (a) ann = 4
low-pass filter; and () the transformed bandpass filter.
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B=x*—1 (8-41)
Cska
A= T (8-42)
bl
B = CAB (8-43)
The bandpass element values can now be computed as follows:
R, = £R (8-44)
CikB
T (8-45)
Cskar
C, = 71 (8-46)
L,= ! (8-47)
. x*Cy
C,(T—1
Cp = “T (8-48)
L, =% (8-49)
37 CL,
Cskar
Cyu= t (3-50)
2
1
L =—F"—"""— (8-51)
3
pr<C] + tl>
C, = L A (8-52)
a La
L, = 650yL, (8-53)
C, = ! (8-54)
b L, —B )

The bandpass filter of Figure 8-206 must be denormalized to the required impedance
level and center frequency f,. Since the source and load impedance levels are unequal,
either the tapped inductor or the capacitance transformation can be used to obtain equal
terminations if required.

The transmission zero above the passband is provided by the parallel resonance of
L,,C,, in branch 2, and the lower zero corresponds to the series resonance of L;C,5 in
branch 3. The circuits of branches 2 and 3 each have conditions of both series and parallel
resonance and can be transformed from one form to the other. The following equations
relate the type 1 and 2 networks shown in Figure 8-21.

For a type 1 network:

C,\?
L = La<1 + Cb) (8-55)
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Ly Cy Lo
Cp
= i, I
Cz Ca
@) (b)
FIGURE 8-21 Equivalent branches: (a) type 1 network; and (b) type 2
network.
_ 1
C, =C, c (8-56)
1+ a’
1
C, = C, c (8-57)
1+ Fb
A — (8-58)
series Zw\/ﬁ
_ 1
N (8-59)
LCC,
2MN\E F G,
For a type 2 network:
_ 1
L, =1L, o\ (8-60)
1+ a
C c<1+C2> (8-61)
a 2 Cl
C,=C, +C, (8-62)
Joeries = - (8-63)
2aVL(C, + Cp)
(8-64)

1
Joue =
" 2mViLc,

In general, the bandpass series arms are of the type 2 form, and the shunt branches are
of the type 1 form, as in Figure 8-19c. The tuning usually consists of adjusting the parallel
resonances of the series branches and the series resonances of the shunt branches—in other
words, the transmission zeros.

8.7 FILTER TUNING METHODS

LC filters are typically assembled using elements with 1- or 2-percent tolerances. For many
applications, the deviation in the desired response caused by component variations may be
unacceptable, so the adjustment of elements will be required. It has been found that wherever
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FIGURE 8-22 Test circuits for adjusting resonant frequencies: (a) adjusting parallel resonance; and
(b) adjusting series resonance.

resonances occur, the LC product of the resonant circuit is significantly more critical than the
L/C ratio. As aresult, filter adjustment normally involves adjusting each tuned circuit for res-
onance at the specified frequency.

Adjustment techniques are based on the impedance extremes that occur at resonance. In
the circuit of Figure 8-22a, an output null will occur at parallel resonance because of voltage-
divider action. Series LC circuits are tuned using the circuit of Figure 8-22b, where an output
null will also occur at resonance.

The adjustment method in both cases involves setting the oscillator for the required fre-
quency and adjusting the variable element, usually the inductor, for an output null. Resistors
R, and R, are chosen so that an approximately 20- to 30-dB drop occurs between the oscil-
lator and the output at resonance. These values can be estimated from

2mf,L,0,
R, = 20 (8-65)
40mf, L,
and R ~—F— (8-66)
o,

where Q, is the inductor Q. A feature of this technique is that no tuning errors result from
stray capacity across the VITVM. (Note that the term “VTVM” is used to represent a high
input-impedance voltage (dB) measuring meter and not necessarily a vacuum tube meter.)
Care should be taken that the oscillator does not have excessive distortion, since a sharp
null may then be difficult to obtain. Also, excessive levels should be avoided, as detuning
can occur from inductor saturation effects. The oscillator and VTVM can be replaced by
the tracking generator output and the signal input of a network analyzer. A swept mea-
surement can be made to determine resonant frequency.

When inductor Qs are below 10, sharp nulls cannot be obtained. A more desirable tun-
ing method is to adjust for the condition of zero phase shift at resonance, which will be
more distinct than the null. The circuits of Figure 8§-22 can still be used in conjunction with
an oscilloscope having both vertical and horizontal inputs. One channel monitors the oscil-
lator and the other channel is connected to the output instead of using the VIVM. A
Lissajous pattern is obtained, and the tuned circuit is then adjusted for a closed ellipse.
Some network analyzers can display phase shift and can be used as well.

Certain construction practices must be used so that the assembled filter can be tuned.
There must be provision for access to each tuned circuit on an individual basis. This is usu-
ally accomplished by leaving all the grounds disconnected until after tuning so that each
branch can be individually inserted into the tuning configurations of Figure 8-22 with all
the other branches present.
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8.8 MEASUREMENT METHODS

This section discusses some major filter parameters and describes techniques for their mea-
surement. Also, some misconceptions associated with these characteristics are clarified. All
measurements should be made using rated operating levels so that the results are meaning-
ful. After fabrication, filters should be subjected to insertion-loss and frequency-response
measurements as a minimum production test.

Insertion Loss and Frequency Response

The frequency response of filters is always considered as relative to the attenuation occur-
ring at a particular reference frequency. The actual attenuation at this reference is called
insertion loss.

The classical definition of insertion loss is the decrease in power delivered to the load
when a filter is inserted between the source and the load. Using Figure 8-23, the insertion
loss is given by

_ P
ILs; = 10 log P (8-67)
2

where P, is the power delivered to the load with both switches in position 1 (filter bypassed)
and P,, is the output power with both switches in position 2. Equation (8-67) can also be
expressed in terms of a voltage ratio as

E%I/RL EL]
=20log = 8-68
ELJR, ¢E, (8-68)

IL;; = 101og

so a decibel meter can be used at the output to measure insertion loss directly in terms of
output voltage.

The classical definition of insertion loss may be somewhat inapplicable when the source
and load terminations are unequal. In reality, if the filter were not used, the source and load
would probably be connected through an impedance-matching transformer instead of a
direct connection. Therefore, the comparison of Figure 8-23 would be invalid.

An alternate definition is transducer loss, which is defined as the decrease in power
delivered to the load when an ideal impedance-matching transformer is replaced by the fil-
ter. The test circuit of Figure 8-23 can still be used if a correction factor is added to Equation
(8-68). The resulting expression then becomes

R, + R,

s

2VRR,

E
ILg; = 20log 2=~ + 20 log (8-69)
L2

Out—o~

Common
l

FIGURE 8-23 The test circuit for insertion loss.
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FIGURE 8-24 The test circuit for frequency response.

Frequency response or relative attenuation is measured using the test circuit of
Figure 8-24. The input source E, is set to the reference frequency and the level is arbitrar-
ily set for a 0-dB reference at the output. As the input frequency is changed, the variation
in output level is the relative attenuation.

It must be understood that the variation of the ratio E,/E; is the frequency response. The
ratio E,/E, is of no significance since it reflects the frequency response of the filter when
driven by a voltage source. As a source frequency is varied, the voltage E, must be kept
constant. Any attempt to keep E; constant will distort the response shape since voltage-
divider action between R and the filter input impedance must normally occur to satisfy the
transfer function.

The oscillator source itself, E,, may contain some internal impedance. Nevertheless, the
value of R, should correspond to the design source impedance since the internal impedance
of E, is allowed for by maintaining the terminal voltage of E, constant.

A network analyzer is commonly used in the industry for measurement of frequency
response and can generate test results in various electronic forms which can then be saved
and manipulated.

Input Impedance of Filter Networks. The input or output impedance of filters must fre-
quently be determined to ensure compatibility with external circuitry. The input impedance
of a filter is the impedance measured at the input terminals with the output appropriately
terminated. Conversely, the output impedance can be measured by terminating the input.

Let us first consider the test circuit of Figure 8-25a. A common fallacy is to adjust the
value of R until |E2| is equal to 1/2 |E] |—that is, a 6-dB drop.

The input impedance Z,, is then said to be equal to R. However, this will be true only if
Z,, is purely resistive. As an example, if Z,, is purely reactive and its absolute magnitude
is equal to R, the value of E, will be 0.707 dB or 3 dB below E, and not 6 dB.

Using the circuit of Figure 8-254, an alternate approach will result in greater accuracy.
If R is adjusted until a 20-dB drop occurs between ’Ez‘ and ’E ! ‘, then ’21‘ is determined by
R/10. The accuracy will be within 10 percent. For even more accurate results, the 40-dB
method can be used where R is adjusted for a 40-dB drop. The magnitude of Z,, is then
given by R/100.

R Rs
y& n Out —AM————1In Out
|—E,—I 1
Zy
C«) Eq £, —» R, @ Ep RL
I Common l Common
(a) (b)

FIGURE 8-25 The measurement of input impedance: (a) an indirect method; and (b) a direct method.
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If a more precise measurement is required, a floating meter can be used in the configu-
ration of Figure 8-25b. The input impedance is then directly given by

|z,| = BT (8-70)

a

Most network analyzers can also measure impedance.

Return Loss. Return loss is a figure of merit which indicates how closely a measured
impedance matches a standard impedance, both in magnitude and in phase angle. Return
loss is expressed as

ZJ X
A, = 20log ﬁ

s X

(8-71)

where Z is the standard impedance and Z, is the measured impedance. For a perfect match,
the return loss would be infinite.

Return loss can be directly measured using the bridge arrangement of Figure 8-26. The
return loss is given by

V,
A, = 20 log (8-72)

01
V()Z

where V|, is the output voltage with the switch closed and Vy, is the output voltage with the
switch open. The return loss can then be read directly using a decibel meter or by using a
network analyzer. The value of R is arbitrary, but both resistors must be closely matched to
each other.

The family of curves in Figure 8-27 represents the return loss using a standard imped-
ance of 600 () with the phase angle of impedance as a parameter. Clearly, the return loss is
very sensitive to the phase angle. If the impedance were 600 () at an angle of only 10°, the
return loss would be 21 dB. If there was no phase shift, an impedance error of as much as
100 Q would correspond to 21 dB of return loss.

Time-Domain Characteristics

Step Response. The step response of a filter network is a useful criterion since low
transient distortion is a necessary requirement for good transmission of modulated signals.
To determine the step response of a low-pass filter, an input DC step is applied. For band-
pass filters, a carrier step is used where the carrier frequency is equal to the filter center fre-
quency f;. Since it is difficult to view a single transient on an oscilloscope unless it’s of the
storage type, a square-wave generator is used instead of the DC step and a tone-burst gen-
erator is substituted for the carrier step. However, a repetition rate must be chosen that is

E S
(~)-
"
R
AAA- I
— V°

FIGURE 8-26 The measurement of return loss.
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FIGURE 8-27 Return loss versus |Z‘

slow enough so that the transient behavior has stabilized prior to the next pulse in order to
obtain meaningful results.

The test configuration is shown in Figure 8-28a. The output waveforms are depicted in
Figure 8-28b and ¢ for a DC step and tone burst, respectively. The following definitions are
applicable:

Percent overshoot P;:  The difference between the peak response and the final steady-
state value expressed as a percentage.

Rise time T,:  The interval between 10 and 90 percent of the final value.

Settling time T, The time required for the response to settle within a specified percent
of its final value.
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FIGURE 8-28 Step response of networks: (a) the test circuit; (b) the step response to a DC step; and
(c) the step response to a tone burst.

The waveform definitions shown in Figure 8-28b also apply to Figure 8-28¢ if we con-
sider the envelope of the carrier waveform instead of the instantaneous values.

Group Delay. The phase shift of a filter can be measured by using the Lissajous pat-
tern method. By connecting the vertical channel of an oscilloscope to the input source, and
the horizontal channel to the load, an ellipse is obtained, as shown in Figure 8-29. The
phase angle in degrees is given by

Y.
¢ = sin"! (8-73)

max

Yint

~) Ry
Common Ynas

r—-—’\f\j\r—-‘ In Out /

1

FIGURE 8-29 The measurement of phase shift.
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Since group delay is the derivative with respect to frequency of the phase shift, we can mea-
sure the phase shift at two closely spaced frequencies and approximate the delay as follows:

A¢
T = 360Af

(8-74)

where A¢ is ¢, — ¢, in degrees, Af is f, — f, in hertz, and T, is the group delay at the
midfrequency—in other words, (f; + f,)/2.

A less accurate method involves determining the 180° phase-shift points. As the fre-
quency is varied throughout the passband of a high-order filter, the phase shift will go
through many integer multiples of 180° where the Lissajous pattern adopts a straight line at
either 45° or 225°. If we record the separation between adjacent 180° points, the nominal
group delay at the midfrequency can be approximated by

1
T ™= 2Af

The classical approach for the measurement of group delay is shown in Figure 8-30. A
sine-wave source, typically 25 Hz, is applied to an amplitude modulator along with a car-
rier signal. The output consists of an amplitude-modulated signal comprising the carrier
and two sidebands at =25 Hz on either side of the carrier. The signal is then applied to the
network under test.

The output signal from the network is of the same form as the input, but the 25 Hz enve-
lope has been shifted in time by an amount equal to the group delay at the carrier frequency.
The output envelope is recovered by an AM detector and applied to a phase detector along
with a reference 25 Hz signal.

The phase detector output is a DC signal proportional to the phase shift between the
25 Hz reference and the demodulated 25-Hz carrier envelope. As the carrier is varied in
frequency, the DC signal will vary in accordance with the change in group delay (differ-
ential delay distortion) and the delay can be displayed on a DC meter having the proper
calibration. If an adjustable phase-shift network is interposed between the AM detector
and phase detector, the meter indication can be adjusted to establish a reference level at
a desired reference frequency.

The theoretical justification for this scheme is based on the fact that the delay of the
envelope is determined by the slope of a line segment interconnecting the phase shift of the
two sidebands at +25 Hz about the carrier—that is, (¢, — ¢)/(w, — w,). This definition
is sometimes called the envelope delay, for obvious reasons. As the separation between
sidebands is decreased, the envelope approaches the theoretical group delay at the carrier
frequency since group delay is defined as the derivative of the phase shift. For most mea-
surements, a modulation rate of 25 Hz is adequate.

Some network analyzers have a feature where group delay can be measured.

UAVA

(8-75)

25 Hz L v\
oscillator | Amplitude »0 oO—»s *
modulator ® ™ e
Network Amplitude
under test detector
Carrier
nNV\N\ Phase @ oC
detector mete

FIGURE 8-30 Direct measurement of group delay.
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FIGURE 8-31 Measuring coil Q: (a) the Q meter method; and (b) the parallel
resonant circuit method.

Measuring the Q of Inductors. A device called Q meter is frequently used to measure the
Q of inductors at a specified frequency. The principle of the Q meter is based on the fact
that in a series resonant circuit, the voltage across each reactive element is Q times the volt-
age applied to the resonant circuit. The Q can then be directly determined by the ratio of
two voltages.

A test circuit is shown in Figure 8-31a. Care should be taken that the applied voltage
does not result in an excessive voltage developed across the inductor during the measure-
ment. Also, the resonating capacitor should have a much higher Q than the inductor, and
the meter used for the voltage measurements should be a high-impedance type to avoid
loading errors.

An alternate approach involves measuring the impedance of a parallel resonant circuit
consisting of the inductor and the required resonating capacitor for the frequency of inter-
est. Using the voltage divider of Figure 8-31b, the Q at resonance is found from

Y

S | S
Q—ZWer<V2 1> (8-76)

A null will occur in V, at resonance.

For meaningful Q measurements, it’s important that the measurement frequency corre-
sponds to the frequency of interest of the filter since coil Q can decrease quite dramatically
outside a particular range. In low-pass and high-pass filters, the Q should be measured at
the cutoff, and for bandpass and band-reject filters, the center frequency is the frequency of
interest.

8.9 DESIGNING FOR UNEQUAL IMPEDANCES

Impedance Matching

Exponentially Tapered Impedance Scaling. Bartlett’s Bisection Theorem, discussed in
Section 3.1, allows us to modify a design for unequal impedances if the initial schematic
(including values) is totally symmetrical around a center line (mirror image). However,
that is not always the case. In addition, the tables in section 11 for all-pole filters having
unequal impedances are limited to finite ratios of termination impedances.

The method shown in Figure 8-32, although not theoretically precise, allows us to grad-
ually taper the impedance of each element of the ladder from source to load. The more the
number of branches of the ladder, the more gradual becomes the tapering, and the less the
change of the original transfer function. Experience has indicated that this works quite well
with at least six branches of the ladder, (excluding source and load resistors). Note that the
load can be higher or lower than the source.
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FIGURE 8-32 A tapered network for unequal impedances.

Minimum Loss Resistive Pad for Impedance Matching. The circuit of Figure 8-33
matches resistive source impedance R, to resistive load impedance R, with minimum loss.
It can be useful when two different filter designs having different impedances are cascaded,
or to match a filter to a termination impedance it is not designed for. The design equations

are
RL
R=R\[1- 8-77)
RL
R, = (8-78)
RL
'TR
Rs R1
4%%% M\ <
[——> - —
® | § Ry | SR Ry/2
3 S Yy —
| |
| - |
: Re>R, : 2R,
| |
| | — A VN—
Re R, R,/2

(a)
FIGURE 8-33 Minimum loss pads: (a) single ended; and (b)
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Rq/2 R,/2
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FIGURE 8-34 Unsymmetrical T attenuators Z, > Z,: (a) single ended; and (b) the balanced version.

Note that R, must be higher than R,. To form a balanced circuit, split R, into two R,/2
resistors as shown. The voltage loss in dB is given by

R/(R, + R))
Voltage Loss dB = 20 Log,, T RR + 1 (8-79)
20
In terms of power, the loss in dB is
RS
Power Loss dB = Voltage Loss dB — 10 Log,, R (8-80)
L

Design of Unsymmetrical Resistive T and  Attenuators for Impedance Matching.
The circuit of Figure 8-33 matches two unequal impedances with minimum loss. To obtain
a fixed amount of attenuation between two unequal resistive impedances, a T or 7 attenu-
ator can be used. The values are computed as follows for the unbalanced and balanced cir-
cuits of Figures 8-34 and 8-35: Note that Z, must be greater than Z,.

For an unsymmetrical T attenuator:

First compute
27, 1z, [z,
Kmin—Z—1+2 Z Z—l (8-81)

For a required voltage loss in dB

Z
dBmin-vo]lage loss 10 LOglOKmin + 10 LOglO?; (8_82)
Rs Ry/2
A%
z Z z Z
4—1>§R1 R2§<—2> -« » 3R, Ry S -2
R3/2
N\

(a) (b)

FIGURE 8-35 Unsymmetrical 7 attenuators Z, > Z,: (a) single ended; and (b) the balanced version.
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This is the minimum voltage loss in dB that results in positive resistor values.

Select a desired voltage loss (dB ) > Minimum Voltage Loss (dB

voltage loss min-voltage luss)

K = IOdB voltage loss/10+Log(Z,/Z,) (8_83)

The resistor values are obtained from

o L AEED - 2VKZ,Z,

1 K — 1 (8-84)
Z(K + 1) — 2VKZZ,
R, = = (8-85)
2VKZZ,
Ry=—"%—71 (8-86)
For a required power loss in dB, first compute:
dBmin-vollage loss 10 LOglOKmin (8'87)

Select a desired power loss (dB ) > Minimum power Loss (dB

power loss. min-power lnss)

K = 10%/0 (8-88)

Resistors R|, R,, and R, are computed using Equations (8-84), (8-85), and (8-86),
respectively. The resulting voltage loss is

Z,
dBvollage loss dBpowerloss + 10 LOgIOZ (8'89)
For an unsymmetrical = attenuator:
First, compute
27, 2|2 (% o
Kmin_72_1+ 7272_1 (8-81)
For a required voltage loss in dB
Z
dBmin-voltagc loss 10 Logl()Kmin + 10 Logl()? (8_82)
2

This is the minimum voltage loss in dB that results in positive resistor values.

Select a desired voltage loss (dB ) > Minimum Voltage Loss (dB

voltage loss min-voltage ]oss)

K = lodB voltage loss/10+Log(Z,/Z,) (8_83)

The resistor values are computed by
o A HVz,
'k + 1)VzZ, - 2VEZ,

(8-90)
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Z(K — H\Vz,

R, = (8-91)
YK+ 1)Vz - 2VEKZ,
_K-1 Z,7,
R; = 3 K (8-92)
For a required power loss in dB, first compute
dBmin-power loss 10 LOglOKmin (8'87)

Select a desired power 1088 (dB ., o) = Minimum power Loss (dB, . power 1oss)

K = 10910 (8-88)
Resistors R, R,, and R, are computed using Equations (8-90), (8-91), and (8-92), respec-
tively.
The resulting voltage loss is
Zl
dBvollage loss dBpower loss + 10 LOglof (8_89)
2

8-10 SYMMETRICAL ATTENUATORS

Symmetrical T and 1 Attenuators. When source- and load-resistive impedances are
equal, a symmetrical 7 or 7r attenuator can be used to symmetrically (bidirectionally) introduce
fixed loss where needed. Figures 8-36 and 8-37 illustrate symmetrical 7" and 7 attenuators,
respectively.

Section 8.8 discusses return loss, which is a figure of merit that indicates how closely a
measured impedance matches a standard impedance, both in magnitude and in phase angle.
Return loss is expressed as
Z, + Z,

AP =20 logﬁ (8-71)

where Z is the standard impedance and Z, is the measured impedance. For a perfect match,
the return loss would be infinite. If the standard impedance is resistive Z, and the network
is preceded with a symmetrical attenuator of X dB at an impedance level of Z, a minimum
return loss of 2X dB is guaranteed even if the network has impedance extremes of zero or
infinity. The attenuator will smooth any impedance gyrations.

R1 R1 R1/2 R1/2
MV M N NN
Z, z z z
- § Rs - D E— § Rs I ——
R4/2 Rq/2
M\ M\

(@) (b)

FIGURE 8-36 Symmetrical T attenuators: (a) single ended; and (b) the balanced version.
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FIGURE 8-37 Symmetrical 7 attenuators: (a) single ended; and (b) the balanced version.

For a given loss in dB (the power loss in dB is equal to the voltage loss in dB since the
impedances are equal on both sides), first compute

K = 1092 (8-93)
For a symmetrical T attenuator:
S, K-1
R =Z% (8-94)
27K
R. = 8-95
S (8-95)
For a symmetrical = attenuator:
K+ 1
R =Z%— (8-96)
__K?—1
Ry =Z"5¢ (8-97)

Bridged T Attenuator. Figure 8-38 shows a symmetrical attenuator in a bridged-T form.

One advantage of this configuration is that only two resistor values have to be changed to

vary attenuation. Two of the resistors always remain at the source and load impedances R,,.
The resistors R, and R, are calculated from

R,
Ry = 2= (8-98)
and R, = Ry(K — 1) (8-99)
where K = 1095720 (8-93)
Ro
AN
A ANV
RO RO
Ro § Ry Ro
- » - »

FIGURE 8-38 A bridged T attenuator.
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8-11 POWER SPLITTERS

Resistive Power Splitters

Resistive power splitters are essentially resistive voltage dividers that distribute a signal in
multiple directions while maintaining the same impedance at all ports. They provide no iso-
lation between ports. In other words, even under ideal perfectly terminated conditions a sig-
nal arriving at any one port appears at all other ports.

Figure 8-39 illustrates an “N”” way splitter, where

N = total number of ports — 1 (8-100)

All resistors are equal to R, which is calculated by

_, N-1
R= RN (8-101)
where R, is the impedance at all ports.
Resistive power splitters by their nature are very inefficient. The loss in dB is
Power Loss dB = 10 Log,, # (8-102)

So for a two-way splitter (three ports, N = 2) the power loss is 6 dB, a four-way splitter
has 12-dB loss, and so forth. Since all impedances are matched, the voltage loss in dB is
exactly equal to the power loss computed by Equation 8-102. This loss in dB is also the iso-
lation between ports.

A Magic-T Splitter. The circuit of Figure 8-40 is commonly called a magic-T splitter or
two-way splitter/combiner. To some extent, it has the functionality of the resistive power
splitter, but it differs in two major ways. First, it has a power loss of 3 dB rather than 6 dB
for the equivalent function of the resistive power splitter. Second, it can have theoretical
infinite isolation between ports A and B. Thus, a signal entering port A will be prevented
from arriving at port B, and vice versa. However, any signals entering either port A or port
B will arrive at port S with 3 dB of loss, and any signal applied to port S will arrive at ports
A and B with 3 dB of loss.

Port 2
v g
R R
O A% AMN—O
Port 1 Port 3
g &
Port K

FIGURE 8-39 A resistive power splitter.
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FIGURE 8-40 The magic-T splitter/combiner.

Observe that port S has an impedance of R;/2. A 2:1 impedance ratio transformer can
step this up to R,

The output signal at port B will not change when port A is terminated with an impedance
other than R, even on a short or open, (Ports A and B are interchangeable). An impedance
mismatch at port S will cause a reflection of the signal applied to port A onto port B. The
amount of this reflection is the return loss of the impedance mismatch at port S, plus 6 dB.

) R, + R
Reflection Loss dB = 20 Log,, + 6dB (8-103)

0 X
R(J - Rx

where R, is the value of the termination of port S.

Operation of the magic-T splitter is not very intuitive from the schematic. Let’s examine
Figure 8-41, where the circuit has been redrawn showing a signal applied to port S.

In the circuit of Figure 8-41, V, results in equal currents, /; and I,, in opposite directions
through 7. The resulting voltages, E, and E,, are equal in magnitude, but opposite in polar-
ity, so they cancel. From the symmetry of the circuit, the signal at port S appears equally at

Port A 2R, Port B
)

FIGURE 8-41 A magic-T with a signal at the S port.
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Port A 2R, Port B
)
N4
R, Ro
VA
+ >
= ; R./2
A

FIGURE 8-42 The magic-T isolation between ports
Aand B.

ports A and B. The impedance seen at port S is R,/2 since the terminations of both ports A
and B are reflected to port S and are in parallel.

The isolation mechanism between ports A and B is illustrated in Figure 8-42. A signal
V,is applied to port A. The impedance measured at the input of 7' between the port A and
port S terminals is R,/2 since T} is terminated with 2R, and a four-to-one impedance step-
down occurs between the port A and port S terminals (center tapped 7). As a result, the
applied voltage divides evenly so E, and Eg are equal.

Because of transformer action, E, results in E, which is equal in magnitude As mea-
sured from the input of port B, E, and Eg are equal and in series but opposite in polarity so
they cancel. Therefore, under these conditions, V, will not appear at port B so total isola-
tion will occur. V, will appear at port S attenuated 3 dB in power.

The final circuit is shown in Figure 8-43. An additional transformer (autotransformer)
having a turns ratio of 1.414:1 has been added to step up R,/2 to R,. The impedance ratio
is 2:1.

Splitter-combiners can be cascaded in a tree-like fashion to create additional ports. The
circuit of Figure 8-44 illustrates how a four-way splitter-combiner can be made from three
two-way splitter combiners. All ports must have equal impedances, however. The insertion
loss for Figure 8-44 is 6 dB.

FIGURE 8-43  The final circuit with equal impedances
at all ports.
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FIGURE 8-44 A four-way splitter-combiner (with
aloss of 6 dB).

Care should be taken when cascading magic-T circuits that transformers 7, and T, have
sufficient bandwidth since the roll-off will be cumulative. As a good rule-of-thumb the
inductance of 7 and T, should be a minimum of R/(7F ), where F/ is the lowest frequency
of interest. In addition, the center-tap accuracy should be in the vicinity of 1 percent.
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CHAPTER 9

DESIGN AND SELECTION OF
INDUCTORS FOR LCFILTERS

9.1 BASIC PRINCIPLES OF
MAGNETIC-CIRCUIT DESIGN

Units of Measurement

Magnetic permeability is represented by the symbol w and is defined by

m=g (CRY
B is the magnetic flux density in lines per square centimeter and is measured in gauss, while
H is the magnetizing force in oersteds that produced the flux. Permeability is dimension-
less and can be considered a figure of merit of a particular magnetic material since it rep-
resents the ease of producing a magnetic flux for a given input. The permeability of air, or
that of a vacuum, is 1.

Magnetizing force is caused by current flowing through turns of wire. Thus, H can be
determined from ampere-turns by

41NI

H=10mL ©-2)

where N is the number of turns, / is the current in amperes, and mL is the mean length of
the magnetic path in centimeters.

The inductance of a coil is directly proportional to the number of flux linkages per unit
current. The total flux is found from

— BA = uHA = A 9-3
¢ = BA = pHA = 5L ©-3)
where A is the cross-sectional area in square centimeters.
The inductance proportionality may then be expressed as
47 NIpA N
“TlomL 1 ©-4)
or directly in henrys by
47N2pA
=2 P -
L - 10 (9-5)
361
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A number of things should be apparent from Equation (9-5). First of all, the inductance
of a coil is directly proportional to the permeability of the core material. If an iron core is
inserted into an air-core inductor, the inductance will increase in direct proportion to the
iron core’s permeability. The inductance is also proportional to N2.

All the previous design equations make the assumption that the magnetic path is uni-
form and closed with negligible leakage flux in the surrounding air such as would occur
with a single-layer toroidal coil structure. However, this assumption is really never com-
pletely valid, so some deviations from the theory can be expected.

The induced voltage of an inductor can be related to the flux density by

E,. = 444BNfA X 1078 (9-6)

where B is the maximum flux density in Gauss, N is the number of turns, fis the frequency
in hertz, and A is the cross-sectional area of the core in square centimeters. This important
equation is derived from Faraday’s law.

As a point of information, the units of flux density B in gauss and the magnetizing force
H in oersteds are CGS units. Mainly outside of the United States, SI units are gaining in
usage. Flux density is then expressed in mT, which is a milli-Tesla and is equivalent to 10
gauss. The magnetizing force is expressed in A/m (ampere/meter) and is equivalent to
41r/10° oersteds.

Saturation and DC Polarization. A plot of B vs. H is shown in Figure 9-1. Let’s start at
point A and increase the magnetizing force to point B. A decrease in magnetizing force will
pass through point C, and then D and E as it becomes negative. An increasing magnetizing
force, again in the positive direction, will travel to B through point F. The enclosed area
formed by the curve is called a hysteresis loop and results from the energy required to
reverse the magnetic molecules of the core. The magnitude of H between points D and A
is called coercive force and is the amount of H necessary to reduce the residual magnetism
in the core to zero.

Permeability was defined as the ratio B/H and can be obtained from the slope of the BH
curve. Since we normally deal with low-level AC signals, the region of interest is restricted
to arelatively narrow range. We can then assume that the permeability is determined by the
derivative of the curve at the origin. The derivative of a B/H curve is sometimes called
incremental permeability.

+H

FIGURE 9-1 The hysteresis loop.
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If a DC bias is introduced, the quiescent point will move from the origin to a point
farther out on the curve. Since the curve tends to flatten out with higher values of H, the
incremental permeability will decrease, which reduces the inductance. This effect is
known as saturation and can also occur without a DC bias for large AC signals. Severe
waveform distortion usually accompanies saturation. The B/H curve for an air core is a
straight line at a 45° angle through the origin. The permeability is unity, and no satura-
tion can occur.

Inductor Losses. The Q of a coil can be found from

wL

Q Rd(' + Rac + Rtl (9 7)
where R, is the copper loss, R, is the core loss, and R, is the dielectric loss. Copper loss
consists strictly of the DC winding resistance and is determined by the wire size and total
length of wire required. The core loss is composed mostly of losses due to eddy currents
and hysteresis. Eddy currents are induced in the core material by changing magnetic fields.
These circulating currents produce losses that are proportional to the square of the induc-
ing frequency.

When a core is subjected to an AC or pulsating DC magnetic field, the B vs. H charac-
teristics can be represented by the curve of Figure 9-1. The enclosed area was called a hys-
teresis loop and resulted from the energy required to reverse the magnetic domains in the
core material. These core losses increase in direct proportion to frequency since each cycle
traverses the hysteresis loop.

The dielectric losses are important at higher frequencies and are determined by the
power factor of the distributed capacity. Keeping the distributed capacity small as well as
using wire insulation with good dielectric properties will minimize dielectric losses.

Above approximately 50 kHz, the current will tend to travel on the surface of a con-
ductor rather than through the cross section. This phenomenon is called skin effect. To
reduce this effect, litz wire is commonly used. This wire consists of many braided strands
of insulated conductors so that a larger surface area is available in comparison with a sin-
gle solid conductor of the equivalent cross section. Above 1 or 2 MHz, solid wire can again
be used.

A figure of merit of the efficiency of a coil at low frequencies is the ratio of ohms per
henry (€}/H), where the ohms correspond to R ,—that is, the copper losses. For a given coil
structure and permeability, the ratio {}/H is a constant independent of the total number of
turns, provided that the winding cross-sectional area is kept constant.

Effect of an Air Gap. If an ideal toroidal core has a narrow air gap introduced, the flux
will decrease and the permeability will be reduced. The resulting effective permeability can
be found from

M
SR
1+/‘Li(ﬁ)

where p; is the initial permeability of the core and g/mL is the ratio of gap to length of the
magnetic path. Equation (9-8) applies to closed magnetic structures of any shape if the ini-
tial permeability is high and the gap ratio small.

The effect of an air gap is to reduce the permeability and make the coil’s characteristics
less dependent upon the initial permeability of the core material. A gap will prevent satu-
ration with large AC signals or DC bias and allow tighter control of inductance. However,

(9-8)
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lower permeability due to the gap requires more turns and, thus, associated copper losses,
S0 a suitable compromise is required.

The Design of Coil Windings. Inductors are normally wound using insulated copper
wire. The general method used to express wire size is the American Wire Gauge (AWG)
system. As the wire size numerically decreases, the diameter increases, where the ratio of
the diameter of one size to the next larger size is 1.1229. The ratio of cross-sectional areas
of adjacent wire sizes corresponds to the square of the diameter, or 1.261. Therefore, for an
available cross-sectional winding area, reducing the wire by one size permits 1.261 times
as many turns. Two wire sizes correspond to a factor of (1.261)?, or 1.59, and three wire
sizes permit twice as many turns.

Physical and electrical properties of a range of wire sizes are given in the wire chart
of Table 9-1. This data is based on using a standard heavy film for the insulation. In the
past, enamel insulations were used which required acid or abrasives for stripping the
insulation from the wire ends to make electrical connections. Solder-able insulations
have been available for the last 30 years so that the wire ends can be easily tinned. In
the event that litz wire is required, a cross reference between litz wire sizes and their
solid equivalent is given in Table 9-2. The convention for specifying litz wire is the num-
ber of strands/wire size. For example, using the chart, a litz equivalent to No. 31 solid is
20 strands of No. 44, or 20/44. In general, a large number of strands is desirable for a
more effective surface area.

The temperature coefficient of resistance for copper is 0.393-percent per degree Celsius.
The DC resistance of a winding at a particular temperature is given by

R, = R[1 + 0.00393(:, — ] (9-9)

where ¢ is the initial temperature and ¢, is the final temperature, both in degrees Celsius. The
maximum permitted temperature of most wire insulations is about 130°C.

To compute the number of turns for a required inductance, the inductance factor for the
coil structure must be used. This factor is generally called A, and is the nominal inductance
per 1000 turns. Since inductance is proportional to the number of turns squared, the required
number of turns N for an inductance L is given by

For A; = mH/1,000 turns N = 107/ AL (9-10)
L
Other commonly used expressions in some data sheets are
— — 1024 | L
For A, = uwH/100 turns N = 10 A 9-11)
L
L
And for A, = nH/turn N = A (9-12)
L

In all cases, L and A, must be in identical units.

After the required number of turns is computed, a wire size must be chosen. For each
winding structure, an associated chart can be tabulated which indicates the maximum num-
ber of turns for each wire size. A wire size can then be chosen which results in the maxi-
mum utilization of the available winding cross-sectional area.

Coil winding methods are very diverse since the winding techniques depend upon
the actual coil structure, the operating frequency range, and so on. Coil winding tech-
niques are discussed in the remainder of this chapter on an individual basis for each coil
structure type.
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TABLE 9-1 Wire Chart—Round Heavy Film Insulated Solid Copper*

Weight Resistance at 20°C (68°F) Turns
Diameter over Insulation Diameter over
Bare, in Additions Insulation Pounds Pounds Per
per 1000 Feetper  per Cubic ~ Ohms per Ohms per Ohms per  Per Linear Square
AWG Minimum Nominal Maximum Minimum Maximum Minimum Maximum Feet Pound Inch 1000 Feet Pounds Cubic Inch Inch Inch AWG

4 0.2023 0.2043 0.2053 0.0037 0.0045 0.2060 0.2098 127.20 7.86 0.244 0.2485 0.001954 0.0004768 4.80 24.0 4
5 0.1801  0.1819  0.1828 0.0036 0.0044 0.1837 01872 100.84 992 0243 0.3134 0.003108 0.0007552 538 289 5
6 0.1604  0.1620  0.1628 0.0035 0.0043 0.1639 0.1671 80.00 1250  0.242 0.3952 0.004940 0.001195 6.03 36.4 6
7 0.1429  0.1443  0.1450 0.0034 0.0041 0.1463 0.1491 63.51 1575 0.241 0.4981 0.007843 0.001890 6.75 45.6 7
8 0.1272 0.1285 0.1292 0.0033 0.0040 0.1305 0.1332 50.39 19.85 0.240 0.6281 0.01246 0.002791 7.57 57.3 8
9 0.1133 01144  0.1150 0.0032 0.0039 0.1165 0.1189 39.98 25.0 0.239 0.7925 0.01982 0.004737 8.48 71.9 9
10 0.1009  0.1019  0.1024 0.0031 0.0037 0.1040 0.1061 31.74 315 0.238 0.9988 0.03147 0.007490 9.50 903 10
11 0.0898 0.0907 0.0912 0.0030 0.0036 0.0928 0.0948 25.16 39.8 0.237 1.26 0.0501 0.0119 10.6 112 11
12 0.0800  0.0808  0.0812 0.0029 0.0035 0.0829 0.0847  20.03 49.9 0.236 1.59 0.0794 0.0187 11.9 142 12
13 00713 00720  0.0724 0.0028 0.0033 0.0741 0.0757 15.89 62.9 0.235 2.00 0.126 0.0296 133 177 13
14 0.0635 0.0641 0.0644 0.0032 0.0038 0.0667 0.0682 12.60 82.9 0.230 2.52 0.200 0.0460 14.8 219 14
15 0.0565 0.0571 0.0574 0.0030 0.0035 0.0595 0.0609 10.04 99.6 0.229 3.18 0.317 0.0726 16.6 276 15
16 0.0503 0.0508 0.0511 0.0029 0.0034 0.0532 0.0545 7.95 126 0.228 4.02 0.506 0.115 18.5 342 16
17 0.0448 0.0453 0.0455 0.0028 0.0033 0.0476 0.0488 6.33 158 0.226 5.05 0.798 0.180 20.7 428 17
18 0.0399 0.0403 0.0405 0.0026 0.0032 0.425 0.0437 5.03 199 0.224 6.39 1.27 0.284 23.1 534 18
19 0.0355 0.0359 0.0361 0.0025 0.0030 0.0380 0.0391 3.99 251 0.223 8.05 2.02 0.450 25.9 671 19
20 0.0317 0.0320 0.0322 0.0023 0.0029 0.0340 0.0351 3.18 314 0.221 10.1 3.18 0.703 28.9 835 20
21 0.0282 0.0285 0.0286 0.0022 0.0028 0.0302 0.0314 2.53 395 0.219 12.8 5.06 1.11 323 1,043 21
22 0.0250 0.0253 0.0254 0.0021 0.0027 0.0271 0.0281 2.00 500 0.217 16.2 8.10 1.76 36.1 1,303 22
23 0.0224 0.0226 0.0227 0.0020 0.0026 0.0244 0.0253 1.60 625 0.215 20.3 12.7 273 40.2 1,616 23
(Continued)

SH31714 07 HO4 SHOLONANI 40 NOILO313S ANV NDIS3a



‘alisgem ay} 1e uanlb se asn Jo swia] 8y} 0} 10algns sI asn Auy
"panesal sIybu ||y “seluedwo) ||IH-MeIDON 8YL 9002 © WbuAdoD

(wooAteiqibunissuibuselbip'mmm) |IH-MeIDON @ Atelqi] Buussulbu3 eubig woly papeojumoq

99¢

TABLE 9-1 Wire Chart—Round Heavy Film Insulated Solid Copper* (Continued)
Weight Resistance at 20°C (68°F) Turns
Diameter over Insulation Diameter over
Bare, in Additions Insulation Pounds Pounds Per
per 1000 Feetper  per Cubic ~ Ohms per Ohms per Ohms per  Per Linear  Square
AWG Minimum Nominal Maximum Minimum Maximum Minimum Maximum Feet Pound Inch 1000 Feet Pounds Cubic Inch Inch Inch AWG
24 0.0199 0.0201 0.0202 0.0019 0.0025 0.0218 0.0227 1.26 794 0.211 25.7 20.4 4.30 44.8 2,007 24
25 0.0177 0.0179 0.0180 0.0018 0.0023 0.0195 0.0203 1.00 1,000 0.210 324 324 6.80 50.1 2,510 25
26 0.0157 0.0159 0.0160 0.0017 0.0022 0.0174 0.0182 0.794 1,259 0.208 41.0 51.6 10.7 56.0 3,136 26
27 0.0141 0.0142 0.0143 0.0016 0.0021 0.0157 0.0164 0.634 1,577 0.205 514 81.1 16.6 62.3 3,831 27
28 0.0125 0.0126 0.0127 0.0016 0.0020 0.0141 0.0147 0.502 1,992 0.202 65.3 130 26.3 69.4 4816 28
29 0.0112 0.0113 0.0114 0.0015 0.0019 0.0127 0.0133 0.405 2,469 0.200 81.2 200 40.0 76.9 5914 29
30 0.0099 0.0100 0.0101 0.0014 0.0018 0.0113 0.0119 0318 3,145 0.197 104 327 64.4 86.2 7,430 30
31 0.0088 0.0089 0.0090 0.0013 0.0018 0.0101 0.0108 0.253 4,000 0.193 131 520 100 96 9,200 31
32 0.0079 0.0080 0.0081 0.0012 0.0017 0.0091 0.0098 0.205 4,900 0.191 162 790 151 106 11,200 32
33 0.0070 0.0071 0.0072 0.0011 0.0016 0.0081 0.0088 0.162 6,200 0.189 206 1,270 240 118 13,900 33
34 0.0062 0.0063 0.0064 0.0010 0.0014 0.0072 0.0078 0.127 7,900 0.189 261 2,060 388 133 17,700 34
35 0.0055 0.0056 0.0057 0.0009 0.0013 0.0064 0.0070 0.101 9,900 0.187 331 3,280 613 149 22,200 35
36 0.0049 0.0050 0.0051 0.0008 0.0012 0.0057 0.0063 0.0805 12,400 0.186 415 5,150 959 167 27,900 36
37 0.0044 0.0045 0.0046 0.0008 0.0011 0.0052 0.0057 0.0655 15,300 0.184 512 7,800 1,438 183 33,500 37
38 0.0039 0.0040 0.0041 0.0007 0.0010 0.0046 0.0051 0.0518 19,300 0.183 648 12,500 2,289 206 42,400 38
39 0.0034 0.0035 0.0036 0.0006 0.0009 0.0040 0.0045 0.0397 25,200 0.183 847 21,300 3,904 235 52,200 39
40 0.0030 0.0031 0.0032 0.0006 0.0008 0.0036 0.0040 0.0312 32,100 0.183 1,080 34,600 6,335 263 69,200 40
41 0.0027 0.0028 0.0029 0.0005 0.0007 0.0032 0.0036 0.0254 39,400 0.183 1,320 52,000 9,510 294 86,400 41
42 0.0024 0.0025 0.0026 0.0004 0.0006 0.0028 0.0032 0.0203 49,300 0.182 1,660 81,800 14,883 328 107,600 42

*courtesy Belden Corp.
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TABLE 9-2 Stranded Wire Equivalent Chart

Size per Strand
Solid
Equivalent 34 35 36 37 38 39 40 41 42 43 44

15 80 100

16 64 80 100

17 50 64 80 100

18 40 50 64 80 100

19 32 40 50 64 80 100

20 25 32 40 50 64 80 100

21 20 25 32 40 50 64 80 100

22 16 20 25 32 40 50 64 80 100

23 12 16 20 25 32 40 50 64 80 100

24 10 12 16 20 25 32 40 50 64 80 100
25 8 10 12 16 20 25 32 40 50 64 80
26 6 8 10 12 16 20 25 32 40 50 64
27 5 6 8 10 12 16 20 25 32 40 50
28 4 5 6 8 10 12 16 20 25 32 40
29 4 5 6 8 10 12 16 20 25 32
30 4 5 6 8 10 12 16 20 25
31 4 5 6 8 10 12 16 20
32 4 5 6 8 10 12 16
33 4 5 6 8 10 12
34 4 5 6 8 10
35 4 5 6 8
36 4 5 6
37 4 5
38 4

9.2 MPP TOROIDAL COILS

MPP Toroidal cores are manufactured by pulverizing a magnetic alloy consisting of approx-
imately 2-percent molybdenum, 81-percent nickel, and 17-percent iron into a fine powder,
insulating the powder with a ceramic binder to form a uniformly distributed air gap, and then
compressing it into a toroidal core at extremely high pressures. Finally, the cores are coated
with an insulating finish.

Molypermalloy powder cores (MPP cores) result in extremely stable inductive compo-
nents for use below a few hundred kilohertz. Core losses are low over a wide range of avail-
able permeabilities. Inductance remains stable with large changes in flux density, frequency,
temperature, and DC magnetization due to high resistivity, low hysteresis, and low eddy-
current losses.

There are mainly two dominant manufacturers of MPP toroids: Magnetics Incorporated
and Arnold Engineering.

Characteristics of Cores

MPP cores are categorized according to size, permeability, and temperature stability.
Generally, the largest core size that physical and economical considerations permit should
be chosen. Larger cores offer higher Qs, since flux density is lower due to the larger
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TABLE 9-3 Toroidal Core Dimensions

Cross Path Window

Section, Length, Area, Wound Coil
OD, in ID, in HT, in cm? cm circular mils OD, in HT, in
0.310 0.156 0.125 0.0615 1.787 18,200 s, Y
0.500 0.300 0.187 0.114 3.12 75,600 19 %2
0.650 0.400 0.250 0.192 4.11 140,600 2/ A
0.800 0.500 0.250 0.226 5.09 225,600 1 A
0.900 0.550 0.300 0.331 5.67 277,700 1%/, Va
1.060 0.580 0.440 0.654 6.35 308,000 1, A
1.350 0.920 0.350 0.454 8.95 788,500 1% A
1.570 0.950 0.570 1.072 9.84 842,700 VA A
2.000 1.250 0.530 1.250 12.73 1,484,000 2% 1Y

NOTE: Core dimensions are before finish.
1 oD |
10

4

HT

'T

cross-sectional area, resulting in lower core losses. The larger window area also reduces the
copper losses.

Cores range in size from an OD of 0.140 to 5.218 in. Table 9-3 contains the physical
data for some selected core sizes, as well as the approximate overall dimensions for the
wound coil.

Available core permeabilities range from 14 to 550. The lower permeabilities are more
suitable for use at the higher frequencies since the core losses are lower. Table 9-4 lists the
A, (inductance per 1000 turns) and ohms per henry for cores with a permeability of 125. For
other permeabilities, the A, is directly proportional to u and the ohms per henry is inversely
proportional to w. The ohms per henry corresponds to the DC resistance factor when the core

TABLE 9-4 Electrical Properties for u = 125

OD, in A,, mH QO/H
0.310 52 900
0.500 56 480
0.650 72 160
0.800 68 220
0.900 90 150
1.060 157 110
1.350 79 80
1.570 168 45
2.000 152 30
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TABLE 9-5 Wire Capacities of Standard Toroidal Cores

Core OD, in

Wire Size 0310  0.500  0.650  0.800  0.900 1.060 1.350 1.570 2.000

25 75 148 189 257 284 750 930 1,735
26 95 186 238 323 357 946 1,172 2,180
27 119 235 300 406 450 1,190 1,470 2,750
28 150 295 377 513 567 1,500 1,860 3,470
29 190 375 475 646 714 1,890 2,350 4,365
30 59 238 472 605 814 925 2,390 2,960 5,550
31 74 300 595 765 1,025 1,180 3,000 3,720 7,090
32 94 376 750 985 1,290 1,510 3,780 4,700 9,000
33 118 475 945 1,250 1,625 1,970 4,763 5,920 11,450
34 150 600 1,190 1,580 2,050 2,520 6,000 7,440 14,550
35 188 753 1,500 2,000 2,585 3,170 7,560 9,400 18,500
36 237 950 1,890 2,520 3,245 4,000 9,510 11,840 23,500
37 300 1,220 2,380 3,170 4,100 5,050 12,000 14,880 30,000
38 378 1,550 3,000 4,000 5,175 6,300 15,150 18,800 38,000
39 476 1,970 3,780 5,050 6,510 8,000 19,050 23,680 48,500
40 600 2,500 4,750 6,300 8200 10,100 24,000 30,000 61,300
41 755

42 950

43 1,200

44 1,510

45 1,900

window is approximately 50-percent utilized. Full window utilization is not possible, how-
ever, because a hole must be provided for a shuttle in the coil winding machine which applies
the turns. The corresponding wire chart for each size core is given in Table 9-5.

DC Bias and AC Flux Density. Under conditions of DC bias current, MPP cores may
exhibit a reduction in permeability because of the effects of saturation. Figure 9-2 illustrates
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FIGURE 9-2 Permeability versus DC bias. (Courtesy Magnetics Inc.)
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this effect, which is more pronounced for higher permeabilities. To use these curves, the
magnetizing force for the design is computed using Equation (9-2). If the reduction in per-
meability and resulting inductance decrease is no more than about 30 percent, the turns can
be increased to compensate for the effect of the bias. If the decrease in permeability is more
than 30 percent, the permeability may further decrease faster than N2 if turns are added. A
larger core would then be required.

The core permeability will also change as a function of the AC flux density. This effect is
shown in Figure 9-3a. The flux density can be computed using Equation (9-6). As the AC flux
density is increased, the permeability will rise initially and then fall beyond approximately
2000 G. Flux density can be reduced by going to a larger core size. Frequency will also impact
permeability for higher permeability cores. This effect is illustrated in Figure 9-3b.
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FIGURE 9-3 Permeability versus AC flux density and frequency. (Courtesy Magnetics Inc.)

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2006 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.



DESIGN AND SELECTION OF INDUCTORS FOR LC FILTERS

DESIGN AND SELECTION OF INDUCTORS FOR LC FILTERS 371

TABLE 9-6 Stabilized Cores

Temperature Range, Inductance Stability,
Stabilization °C 1%
M4 —65to +125 *0.25
W4 —55to +85 +0.25
D4 Oto +55 *0.1

The core losses can be assumed to be relatively constant for flux densities below 200 G.
For higher excitations, the Q may be adversely affected, however.

Temperature Stability. MPP cores are available in three categories of temperature
stabilities: standard, stabilized, and linear (where linear is a subset of stabilized).
Stabilizing techniques are based on the addition of a small amount of special compen-
sating alloys having Curie points within the temperature range of operation. (The Curie
point is the temperature where the material becomes nonmagnetic.) As each Curie point
is passed, the particles act as distributed air gaps which can be used to compensate for
permeability changes of the basic alloy so as to maintain the inductance at almost a con-
stant value.

Standard cores, also called “A” stabilization, have no guaranteed limits for permeabil-
ity variations with temperature. Typically, the temperature coefficient of permeability is
positive and ranges from 25 to 100 ppm/°C, but these limits are not guaranteed. Stabilized
cores, on the other hand, have guaranteed limits over wide temperature ranges. These cores
are available in three degrees of stabilization: M4, W4, and D4 from Magnetics Incorporated.
The limits are as given in Table 9-6.

Because of the nature of the compensation technique, the slope of inductance change
with temperature can be either positive or negative within the temperature range of opera-
tion, but will not exceed the guaranteed limits.

Polystyrene capacitors maintain a precise temperature coefficient of —120 ppm/°C
from —55 to +85°C. Cores are available which provide a matching positive tempera-
ture coefficient so that a constant LC product can be maintained over the temperature
range of operation. These cores are said to have linear temperature characteristics. Two
types of linear temperature characteristics can be obtained. The L6 degree of stabiliza-
tion has a positive temperature coefficient ranging between +25 and +90 ppm/°C, from
—55° to +25°C, and between +65 and +150 ppm/°C over the temperature range +25
to +85°C.

In general, the temperature stability of MPP cores is affected by factors such as wind-
ing stresses and moisture. To minimize these factors, suitable precautions can be taken.
Before adjustment, the coils should be temperature-cycled from —55 to +100°C at least
once. After cooling to room temperature, the coils are adjusted and should be kept dry until
encapsulated. Encapsulation compounds should be chosen carefully to minimize mechan-
ical stresses. A common technique involves dipping the coils in a silicon rubber compound
for a cushioning and sealing effect prior to encapsulation.

Typically, stabilization performance is not guaranteed above excitations of around 100 G.

Winding Methods for Q Optimization. At low frequencies, the dominant losses are
caused by the DC resistance of the winding. The major consideration then is to utilize the
maximum possible winding area. Distributed capacity is of little consequence unless the
inductance is extremely high, causing self-resonance to occur near the operating frequency
range.
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The most efficient method of packing the most turns on a toroidal core is to rotate the
core continuously in the same direction in the winding machine until maximum capacity is
obtained. This technique is called the 360° method.

At medium frequencies, special winding techniques are required to minimize distrib-
uted capacity. By winding half the turns over a 180° sector of the core in a back-and-forth
manner and then applying the remaining turns over the second half in the same fashion, the
capacity will be reduced. This technique is called the rwo-section method. If after winding
half the turns the coil is removed from the machine, turned over, reinserted, and completed,
the two starts can be tied together, and the resulting coil using the two finishes as terminals
has even less capacity. This modified two-section winding structure is commonly referred
to as two-section reversed.

If the core is divided into four 90° quadrants and each sector is completed in a back-and-
forth winding fashion using one-fourth the total turns, a four-section coil will be obtained.
A four-section winding structure has lower distributed capacity than the two-section
method. However, whereas the two-section and 360° methods correspond to the wire chart
of Table 9-5, the wire must be reduced one size for a four-section coil, resulting in more cop-
per losses.

At frequencies near 50 kHz or higher, the distributed capacity becomes a serious limit-
ing factor of the obtainable Q from both self-resonance and dielectric losses of the winding
insulation. The optimum winding method for minimizing distributed capacity is back-to-
back progressive. Half the total number of turns are applied over a 180° sector of the core
by gradually filling up a 30° sector at a time. The core is then removed from the machine,
turned over, reinserted in the machine, and completed in the same manner. The two starts
are then joined and the two finish leads are used for the coil terminals. A barrier is fre-
quently used to separate the two finish leads for further capacity reduction. Litz wire can
be combined with the back-to-back progressive winding method to reduce skin-effect
losses. As with a four-section winding, the wire must be reduced one size from the wire
chart of Table 9-5. If the core is not removed from the winding machine after completion
of a 180° sector but instead is continued for approximately 360°, a straight-progressive type
of winding is obtained. Although slightly inferior to the back-to-back progressive, the
reduction in winding time will frequently warrant its use.

When a coil includes a tap, a coefficient of magnetic coupling near unity is desirable to
avoid leakage inductance. The 360° winding method will have a typical coefficient of cou-
pling of about 0.99 for permeabilities of 125 and higher. A two-section winding has a coef-
ficient of coupling near 0.8. The four-section and progressive winding methods result in
coupling coefficients of approximately 0.3, which is usually unacceptable. A compromise
between the 360° and the progressive method to improve coupling for tapped inductors
involves applying the turns up to the tap in a straight-progressive fashion over the total core.
The remaining turns are then distributed completely over the initial winding, also using the
straight-progressive method.

In general, to obtain good coupling, the portion of the winding up to the tap should be
in close proximity to the remainder of the winding. However, this results in higher distrib-
uted capacity, so a compromise may be desirable. Higher core permeability will increase
the coupling but can sometimes result in excessive core loss. The higher the ratio of over-
all to tap inductance, the lower the corresponding coefficient of coupling. Inductance ratios
of 10 or more should be avoided if possible.

Designing MPP Toroids from Q Curves. The Q curves given in Figure 9-4 are based on
empirical data using the 360° winding method. The range of distributed capacity is typi-
cally between 10 and 25 pF for cores under 0.500 in OD, 25 to 50 pF for cores between
0.500 and 1.500 in OD, and 50 to 80 pF for cores over 1.500 in OD.

Curves are presented for permeabilities of 60 and 125 and for a range of core sizes. For
a given size and permeability, the Q curves converge on the low-frequency portion of the
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FIGURE 94 Q curves of MPP toroidal cores. (Courtesy Magnetics Inc.)
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curve, where the losses are determined almost exclusively by the DC resistance of the
winding. The Q in this region can be approximated by

2nf

T QOH ©-13)

where fis the frequency of interest and {)/H is the rated ohms per henry of the core (as given
by Table 9-4) and modified for permeability if other than 125.

As the frequency is increased, the curves start to diverge and reach a maximum at a fre-
quency where the copper and core losses are equal. Beyond this region, the core losses
begin to dominate along with increased dielectric losses as self-resonance is approached,
causing the Q to roll off dramatically. It is always preferable to operate on the rising por-
tion of Q curves since the losses can be tightly controlled and the effective inductance
remains relatively constant with frequency.

Example 9-1 Design of a Toroidal Inductor

Required:

Design a toroidal inductor having an inductance of 1.5 H and a minimum Q of 55 at
1 kHz. The coil must pass a DC current of up to 10 mA and operate with AC signals
as high as 10 V. with negligible effect.

Result:

(a) Using the Q curves of Figure 9-4, a 1.060-in-diameter core having a u of 125 will
have a Q of approximately 60 at 1 kHz. The required number of turns is found from

— 100 L = o 1S = i
N = 10 = 10% 5757 = 3090 (9-10)

where the value of A; was given in Table 9-4. The corresponding wire size is deter-
mined from Table 9-5 as No. 35 AWG.

(b) To estimate the effect of the DC current, compute the magnetizing force from

b = AmNL _ 4w X 3090 X 0.01
10 mL 10 X 635

= 6.10e (9-2)

where mL, the magnetic path length, is obtained from Table 9-3. According to
Figure 9-2, the permeability will remain essentially constant.
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(c) An excitation level of 10 V_ at 1000 Hz results in a flux density of
E

ms

B=— ™
444NfA X 1078
_ 10
4.44 X 3090 X 1000 X 0.654 X 1078
= 111G (9-6)

where A, the core’s cross-sectional area, is also found in Table 9-3. Figure 9-3 indi-
cates that at the calculated flux density the permeability change will be of little con-
sequence.

9.3 FERRITE POT CORES

Ferrites are ceramic structures created by
combining iron oxide with oxides or carbon-
ates of other metals such as manganese,
nickel, or magnesium. The mixtures are Adjustment slug
pressed, fired in a kiln at very high tempera-
tures, and machined into the required shapes.

The major advantage of ferrites over MPP
cores is their high resistivity so that core losses
are extremely low even at higher frequencies
where eddy-current losses become critical.
Additional properties such as high permeabil-
ity and good stability with time and tempera-
ture often make ferrites the best core-material
choice for frequencies from 10 kHz to well in
the megahertz region.

Metal clamp

Pot core half

The Pot Core Structure

. . . Nylon bobbin
A typical pot core assembly is shown in

Figure 9-5. A winding supported on a bob-
bin is mounted in a set of symmetrical ferrite
pot core halves. The assembly is held rigid Pot core half
by a metal clamp. An air gap is introduced in
the center post of each half since only the

outside surfaces of the pot core halves mate @ Threaded insert
with each other. By introducing an adjust- =

ment slug containing a ferrite sleeve, the

effect of the gap can be partially neutralized @Bakelite washer
as the slug is inserted into the gap region. -

A ferrite pot core has a number of distinct
advantages over other approaches. Since the Bottom plate
wound coil is contained within the ferrite

core, the structure is self-shielding because |
stray magnetic fields are prevented from
entering or leaving the structure. FIGURE 9-5 A typical ferrite pot core assembly.
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TABLE 9-7 Standard Pot Core Sizes

Manufacturer Diameter (max) Height (max)
Core Size Cross Section Path Length

Designation in mm in mm cm? cm
905 0.366 9.3 0.212 54 0.101 1.25
1107 0.445 11.3 0.264 6.7 0.167 1.55
1408 0.559 14.2 0.334 8.5 0.251 1.98
1811 0.727 18.5 0.426 10.8 0.433 2.58
2213 0.858 21.8 0.536 13.6 0.635 3.15
2616 1.024 26.0 0.638 16.2 0.948 3.76
3019 1.201 30.5 0.748 19.0 1.38 4.52
3622 1.418 36.0 0.864 22.0 2.02 532
4229 1.697 43.1 1.162 29.5 2.66 6.81

Very high Qs and good temperature stability can be obtained by selecting the appropri-
ate materials and by controlling the effective permeability w, through the air gap. Fine
adjustment of the effective permeability is accomplished using the adjustment slug.

Compared with other structures, ferrite pot cores are more economical. Bobbins can be
rapidly wound using multiple-bobbin winding machines in contrast to toroids, which must
be individually wound. Assembly and mounting is easily accomplished using a variety of
hardware available from the ferrite manufacturer. Printed circuit-type brackets and bobbins
facilitate the use of pot cores on printed circuit boards.

Pot cores have been standardized into nine international sizes ranging from 9 by 5 mm
to 42 by 29 mm, where these dimensions represent the diameter and height, respectively,
of a pot core pair. These sizes are summarized in Table 9-7. Two of the major suppliers of
ferrite pot cores are Magnetics Inc. and Ferroxcube Corporation.

Electrical Properties of Ferrite Pot Cores. Ferrite materials are available having a wide
range of electrical properties. Table 9-8 lists some representative materials from Magnetics
Inc. and Ferroxcube Corporation and their properties.

Let’s first consider initial permeability as a function of frequency. A material must be
chosen that provides uniform permeability over the frequency range of interest. It is evident
from Figure 9-6 that for that particular material shown, operation must be restricted to below
1.5 MHz. Even though a relatively large variation may occur even over this restricted range,
a gapped core will show much less variation. As a rule-of-thumb, lower permeability mate-
rials have wider frequency ranges of operation.

Another factor of importance is the stability of permeability versus temperature. Figure
9-7 illustrates the behavior of permeability versus temperature for Magnetics Inc. type R, F,
and P materials. Although the temperature coefficient appears to have a high positive tem-
perature coefficient, for a gapped core it is much less—depending on gap size, of course, the
larger the gap the lower the temperature coefficient.

The temperature coefficient of permeability is an important factor in LC-tuned cir-
cuits and filters. Upon the proper selection of size, material, and gap, a positive linear
temperature coefficient can sometimes be obtained to precisely match the negative tem-
perature coefficient of polystyrene or polypropylene capacitors to maintain a constant LC
product. In other cases, the objective would be to obtain as low a combined temperature
coefficient as possible.
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TABLE 9-8 Ferrite Material Properties

Magnetics Inc.

Material A D G R P F
Initial 750 2000 2300 2300 2500 3000
permeability w; *+20% +20% +20% +25% +25% +20%
Maximum usable <9 MHz <4 MHz <4 MHz <1.5MHz | <1.2MHz | <1.3 MHz
frequency (50%
roll-off in ;)
Saturation flux 4600 3800 4600 5000 5000 4900

density at 15 Oe
in gauss (B,,)

Ferroxcube Corporation

Material 3B7 3D3 3H3

Initial 2300 750 2000
permeability w;

Maximum usable <0.1 MHz <2 MHz <0.2 MHz
frequency (50%
roll-off in w,)

Saturation flux 4400 3800 3600
density at 15 Oe
in gauss (B,

4000
AN
F T TN
3000 ]
P&R P
£ 2000 \\
1000 \
20 30 40 60 80 200 300 400 500 2000 5000
10 100 1000

Frequency, kHz
FIGURE 9-6 Initial permeability u, versus frequency for F, P, and R materials. (Courtesy Magnetics Inc.)

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2006 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.



DESIGN AND SELECTION OF INDUCTORS FOR LC FILTERS

DESIGN AND SELECTION OF INDUCTORS FOR LC FILTERS 379

TYPE R MATERIAL
Permeability vs. Temperature
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TYPE F MATERIAL
Permeability vs. Temperature
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FIGURE 9-7 Initial permeability u, versus temperature for R, F, and P
Materials. (Courtesy Magnetics Inc.)
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TABLE 9-9 The Electrical Properties of
Standard Core Sizes for A, = 250 mH

Size
Designation e QO/H
905 230 700
1107 184 570
1408 156 380
1811 119 260
2213 98 190
2616 78 170
3019 64 140
3622 52 130
4229 51 80

For a given core, a wide range of A, factors are available. This parameter is determined
by the effective permeability of the core, which in turn is controlled by the initial perme-
ability of the ferrite material, the core dimensions, and the size of the air gap introduced in
the center post. Table 9-9 lists the effective permeability and the ohms-per-henry rating for
all the standard core sizes, where the A, is maintained constant at 250 mH. For other val-
ues, the effective permeability is proportional to the rated A; and the ohms per henry is
inversely proportional to this same factor.

Pot cores are also available that have no gap. However, since the resulting electrical
characteristics are essentially equivalent to the initial properties of the ferrite material, these
cores should be restricted to applications where high permeability is the major requirement,
such as for wideband transformers.

Most ferrite materials saturate with AC flux densities in the region of 3000—-4000 G. AC
excitation levels should be kept below a few h